Year
Month
(Peer-Reviewed) Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
Xin Ge 葛昕 ¹, Si Chen 陈思 ¹, Kan Lin 林侃 ¹, Guangming Ni 倪光明 ⁴, En Bo 伯恩 ¹, Lulu Wang 王露露 ¹, Linbo Liu 刘琳波 ¹ ² ³
¹ School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
² School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
³ China-Singapore International Joint Research Institute (CSIJRI), Guangzhou 510000, China
中国 广州 中新国际联合研究院(CSIJRI)
⁴ School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
中国 成都 电子科技大学 光电科学与工程学院
Opto-Electronic Science, 2024-01-31
Abstract

Deconvolution is a commonly employed technique for enhancing image quality in optical imaging methods. Unfortunately, its application in optical coherence tomography (OCT) is often hindered by sensitivity to noise, which leads to additive ringing artifacts. These artifacts considerably degrade the quality of deconvolved images, thereby limiting its effectiveness in OCT imaging.

In this study, we propose a framework that integrates numerical random phase masks into the deconvolution process, effectively eliminating these artifacts and enhancing image clarity. The optimized joint operation of an iterative Richardson-Lucy deconvolution and numerical synthesis of random phase masks (RPM), termed as Deconv-RPM, enables a 2.5-fold reduction in full width at half-maximum (FWHM).

We demonstrate that the Deconv-RPM method significantly enhances image clarity, allowing for the discernment of previously unresolved cellular-level details in nonkeratinized epithelial cells ex vivo and moving blood cells in vivo.
Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation_1
Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation_2
Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation_3
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07



  • Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations                                Advancing computer-generated holographic display thanks to diffraction model-driven deep nets
    About
    |
    Contact
    |
    Copyright © PubCard