(Peer-Reviewed) Partially coherent optical chip enables physical-layer public-key encryption
Bo Wu ¹, Wenkai Zhang ¹, Hailong Zhou ¹, Jianji Dong ¹, Yilun Wang ², Xinliang Zhang ¹
¹ Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学光学与电子信息学院 武汉光电国家研究中心
² College of Science, National University of Defense Technology, Changsha 410073, China
中国 长沙 中国人民解放军国防科技大学理学院
Opto-Electronic Advances, 2025-11-25
Abstract
Public-key encryption is essential for secure communications, eliminating the need for pre-shared keys. However, traditional schemes such as RSA (Rivest-Shamir-Adleman) and elliptic curve cryptography rely on computational complexity, making them increasingly susceptible to advances in computing power and algorithms. Physical-layer encryption, which leverages the intrinsic properties of physical systems, offers a promising alternative with security rooted in physics. Despite progress in this field, public-key encryption at the optical layer remains largely unexplored.
Here, we propose a novel optical public-key encryption scheme based on partially coherent light sources. The cryptographic keys are encoded in the incoherent optical transmission matrix of an on-chip Mach-Zehnder interferometer mesh, providing high complexity and resilience to computational attacks. We experimentally demonstrate encrypted image transmission over 40 km of optical fiber with high decryption fidelity and achieve a 10 Gbit/s optical encryption rate using a lithium niobate photonic chip.
This represents the first implementation of public-key encryption at the physical optical layer. The approach offers key advantages in security, cost, energy efficiency, and compatibility with commercial optical communication systems. By integrating public-key encryption into photonic hardware, this work opens a new direction for secure and high-speed optical communications in next-generation networks.
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
Opto-Electronic Advances
2025-09-25
Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
Opto-Electronic Advances
2025-09-25
Meta-lens digital image correlation
Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
Opto-Electronic Advances
2025-07-29