Year
Month
(Peer-Reviewed) Partially coherent optical chip enables physical-layer public-key encryption
Bo Wu ¹, Wenkai Zhang ¹, Hailong Zhou ¹, Jianji Dong ¹, Yilun Wang ², Xinliang Zhang ¹
¹ Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学光学与电子信息学院 武汉光电国家研究中心
² College of Science, National University of Defense Technology, Changsha 410073, China
中国 长沙 中国人民解放军国防科技大学理学院
Opto-Electronic Advances, 2025-11-25
Abstract

Public-key encryption is essential for secure communications, eliminating the need for pre-shared keys. However, traditional schemes such as RSA (Rivest-Shamir-Adleman) and elliptic curve cryptography rely on computational complexity, making them increasingly susceptible to advances in computing power and algorithms. Physical-layer encryption, which leverages the intrinsic properties of physical systems, offers a promising alternative with security rooted in physics. Despite progress in this field, public-key encryption at the optical layer remains largely unexplored.

Here, we propose a novel optical public-key encryption scheme based on partially coherent light sources. The cryptographic keys are encoded in the incoherent optical transmission matrix of an on-chip Mach-Zehnder interferometer mesh, providing high complexity and resilience to computational attacks. We experimentally demonstrate encrypted image transmission over 40 km of optical fiber with high decryption fidelity and achieve a 10 Gbit/s optical encryption rate using a lithium niobate photonic chip.

This represents the first implementation of public-key encryption at the physical optical layer. The approach offers key advantages in security, cost, energy efficiency, and compatibility with commercial optical communication systems. By integrating public-key encryption into photonic hardware, this work opens a new direction for secure and high-speed optical communications in next-generation networks.
Partially coherent optical chip enables physical-layer public-key encryption_1
Partially coherent optical chip enables physical-layer public-key encryption_2
Partially coherent optical chip enables physical-layer public-key encryption_3
Partially coherent optical chip enables physical-layer public-key encryption_4
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25
  • Phase matching sampling algorithm for sampling rate reduction in time division multiplexing optical fiber sensor system
  • Junhui Wu, Zhilin Xu, Yi Shi, Yurong Liang, Qizhen Sun
  • Opto-Electronic Technology
  • 2025-09-18
  • Three-dimensional integrated optical fiber devices: emergence and applications
  • Tingting Yuan, Xiaotong Zhang, Shitai Yang, Donghui Wang, Libo Yuan
  • Opto-Electronic Technology
  • 2025-09-18
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • All-optical digital logic and neuromorphic computing based on multi-wavelength auxiliary and competition in a single microring resonator
  • Qiang Zhang, Yingjun Fang, Ning Jiang, Anran Li, Jiahao Qian, Yiqun Zhang, Gang Hu, Kun Qiu
  • Opto-Electronic Science
  • 2025-08-28
  • Fast step heterodyne light-induced thermoelastic spectroscopy gas sensing based on a quartz tuning fork with high-frequency of 100 kHz
  • Yuanzhi Wang Ying He, Shunda Qiao, Xiaonan Liu, Chu Zhan, Xiaoming Duan, Yufei Ma
  • Opto-Electronic Advances
  • 2025-08-28
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25
  • Meta-lens digital image correlation
  • Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
  • Opto-Electronic Advances
  • 2025-07-29
  • Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection
  • Xinran Wei, Yuzhang Liang, Xuhui Zhang, Rui Li, Haonan Wei, Yijin He, Lanlan Shen, Yurui Fang, Ting Xu, Wei Peng
  • Opto-Electronic Science
  • 2025-07-25



  • Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform                                Advanced applications of pulsed laser deposition in electrocatalysts for hydrogen-electric conversion systems
    About
    |
    Contact
    |
    Copyright © PubCard