Year
Month
(Peer-Reviewed) Separation and identification of mixed signal for distributed acoustic sensor using deep learning
Huaxin Gu 谷华鑫 ¹, Jingming Zhang 张靖明 ², Xingwei Chen 陈星炜 ², Feihong Yu 余飞宏 ², Deyu Xu 许德宇 ¹, Shuaiqi Liu 刘帅旗 ³, Weihao Lin 林伟浩 ⁴, Xiaobing Shi 施晓兵 ², Zixing Huang 黄子星 ², Xiongji Yang 杨雄基 ², Qingchang Hu 胡清畅 ², Liyang Shao 邵理阳 ¹ ² ⁵
¹ School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China
中国 深圳 南方科技大学创新创业学院
² Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055 China
中国 深圳 南方科技大学电子与电气工程系
³ Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
中国 郑州 哈尔滨工业大学郑州研究院
⁴ Higher Educational Key Laboratory for Flexible Manufacturing Equipment Integration of Fujian Province; School of Mechanical Electrical and Information Engineering, Xiamen Institute of Technology, Xiamen 361021, China
中国 厦门 厦门工学院机械电气与信息工程学院 柔性制造装备集成福建省高校重点实验室
⁵ Peng Cheng Laboratory, Shenzhen 518055, China
中国 深圳 鹏城实验室
Opto-Electronic Advances, 2025-11-25
Abstract

With the application of Distributed Acoustic Sensors (DAS) across various infrastructures, it will play a pivotal role in shaping smart cities in the future. However, the current single-source detection and identification technology might struggle to meet the high precision needs in the intricate environmental conditions of mixed multi-source interference. We propose a new deep neural network-based multi-source signal separation method for DAS and accomplish the separation performance of this method under practical applications.

In addition, a new evaluation metric for the separation method is proposed in conjunction with the separation and identification of DAS mixed signals. For mixed signals with different source numbers, the recognizable rate of separated signals can reach 98.33% on average. This study provides a promising solution to the multi-source mixed interference problem faced by DAS in complex environments.
Separation and identification of mixed signal for distributed acoustic sensor using deep learning_1
Separation and identification of mixed signal for distributed acoustic sensor using deep learning_2
Separation and identification of mixed signal for distributed acoustic sensor using deep learning_3
  • Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
  • Meng Wang, Dehai Liang1, Saif M. H. Qaid, Shuangyi Zhao, Yingjie Liu, Zhigang Zang
  • Opto-Electronic Advances
  • 2025-10-25
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
  • Fujie Li, Haoyu Zhang, Zhilan Lu, Li Yao, Yuan Wei, Ziwei Li, Feng Bao, Junwen Zhang, Yingjun Zhou, Nan Chi
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16
  • Halide perovskite volatile unipolar nanomemristor
  • Abolfazl Mahmoodpoor, Prokhor A. Alekseev, Ksenia A. Gasnikova, Kuzmenko Natalia, Artem Larin, Sergey Makarov Aleksandra Furasova
  • Opto-Electronic Advances
  • 2025-10-15
  • Recent advances in exciton-polariton in perovskite
  • Khalil As'ham, Andergachew Mekonnen Berhe, Ibrahim A. M. Al-Ani, Haroldo T. Hattori, Andrey E. Miroshnichenko
  • Opto-Electronic Science
  • 2025-09-25
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25
  • Parallel all-optical encoded CDMA-driven anti-interference LiDAR for 78 MHz point acquisition
  • Shujian Gong, Peng Tian, Yinghui Guo, Xiaoyin Li, Mingbo Pu, Qi Zhang, Yanqin Wang, Heping Liu, Xiangang Luo
  • Opto-Electronic Technology
  • 2025-09-22



  • Enrichment strategies in surface-enhanced Raman scattering: theoretical insights and optical design for enhanced light-matter interaction                                Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
    About
    |
    Contact
    |
    Copyright © PubCard