Year
Month
(Peer-Reviewed) Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
Yongwei Yao 姚勇伟 ¹, Yaping Zhang 张亚萍 ¹ ², Huanrong He 何欢荣 ¹, Xianfeng David Gu 顾险峰 ³, Daping Chu 初大平 ⁴, Ting-Chung Poon 潘定中 ⁵
¹ Yunnan Provincial Key Laboratory of Modern Information Optics (LMIO), Kunming University of Science and Technology, Kunming 650500, China
中国 昆明 昆明理工大学 云南省现代信息光学重点实验室
² Cambridge Digital Humanities (CDH), University of Cambridge, Cambridge CB2 1RX, UK
³ Computer Science Department, SUNY at Stony Brook, Stony Brook, New York 11794, USA
⁴ Centre for Photonic Devices and Sensors, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK
⁵ Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA
Opto-Electronic Advances, 2025-11-25
Abstract

We present a novel method for scale-invariant 3D face recognition by integrating computer-generated holography with the Mellin transform. This approach leverages the scale-invariance property of the Mellin transform to address challenges related to variations in 3D facial sizes during recognition.

By applying the Mellin transform to computer-generated holograms and performing correlation between them, which, to the best of our knowledge, is being done for the first time, we have developed a robust recognition framework capable of managing significant scale variations without compromising recognition accuracy. Digital holograms of 3D faces are generated from a face database, and the Mellin transform is employed to enable robust recognition across scale factors ranging from 0.4 to 2.0. Within this range, the method achieves 100% recognition accuracy, as confirmed by both simulation-based and hybrid optical/digital experimental validations.

Numerical calculations demonstrate that our method significantly enhances the accuracy and reliability of 3D face recognition, as evidenced by the sharp correlation peaks and higher peak-to-noise ratio (PNR) values than that of using conventional holograms without the Mellin transform. Additionally, the hybrid optical/digital joint transform correlation hardware further validates the method's effectiveness, demonstrating its capability to accurately identify and distinguish 3D faces at various scales. This work provides a promising solution for advanced biometric systems, especially for those which require 3D scale-invariant recognition.
Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform_1
Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform_2
Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform_3
Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform_4
  • Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
  • Meng Wang, Dehai Liang1, Saif M. H. Qaid, Shuangyi Zhao, Yingjie Liu, Zhigang Zang
  • Opto-Electronic Advances
  • 2025-10-25
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
  • Fujie Li, Haoyu Zhang, Zhilan Lu, Li Yao, Yuan Wei, Ziwei Li, Feng Bao, Junwen Zhang, Yingjun Zhou, Nan Chi
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16
  • Halide perovskite volatile unipolar nanomemristor
  • Abolfazl Mahmoodpoor, Prokhor A. Alekseev, Ksenia A. Gasnikova, Kuzmenko Natalia, Artem Larin, Sergey Makarov Aleksandra Furasova
  • Opto-Electronic Advances
  • 2025-10-15
  • Recent advances in exciton-polariton in perovskite
  • Khalil As'ham, Andergachew Mekonnen Berhe, Ibrahim A. M. Al-Ani, Haroldo T. Hattori, Andrey E. Miroshnichenko
  • Opto-Electronic Science
  • 2025-09-25
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25
  • Parallel all-optical encoded CDMA-driven anti-interference LiDAR for 78 MHz point acquisition
  • Shujian Gong, Peng Tian, Yinghui Guo, Xiaoyin Li, Mingbo Pu, Qi Zhang, Yanqin Wang, Heping Liu, Xiangang Luo
  • Opto-Electronic Technology
  • 2025-09-22



  • Separation and identification of mixed signal for distributed acoustic sensor using deep learning                                Partially coherent optical chip enables physical-layer public-key encryption
    About
    |
    Contact
    |
    Copyright © PubCard