(Peer-Reviewed) Advancing computer-generated holographic display thanks to diffraction model-driven deep nets
Vittorio Bianco, Pietro Ferraro
CNR- ISASI Institute of Applied Sciences & Intelligent Systems Viale Campi Flegrei, 34 80078 Pozzuoli (Na) Italy
Opto-Electronic Advances, 2024-01-16
Abstract
Advancements are reported in computer-generated holography proofing RGB 4K display through a new strategy based on diffraction model-driven deep networks. In the new 4K-DMDNet, the network is not a “black box” anymore. Rather, the input-output relation must obey to the physics of wavefront propagation, which is embedded here as a constraint.
Thus, a labelled dataset is not required, and the model shows superior generalization capabilities with respect to data-driven approaches. The method is promising for the new generation of RGB 4K holographic display, as well as augmented and virtual reality systems.
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
Opto-Electronic Advances
2025-09-25
Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
Opto-Electronic Advances
2025-09-25