Year
Month
(Conference Paper) A Proactive Failure Tolerant Mechanism for SSDs Storage Systems based on Unsupervised Learning
Hao Zhou 周浩 ¹, Zhiheng Niu ², Gang Wang 王刚 ², XiaoGuang Liu 刘晓光 ², Dongshi Liu ³, Bingnan Kang ³, Hu Zheng ³, Yong Zhang ³
¹ College of Cyber Science TJ Key Lab of NDST, Nankai University, Tianjin, China
中国 天津 南开大学网络空间安全学院 天津市网络与数据安全技术重点实验室
² College of Computer Science TJ Key Lab of NDST, Nankai University, Tianjin, China
中国 天津 南开大学计算机学院 天津市网络与数据安全技术重点实验室
³ Huawei
华为
2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), 2021-08-26
Abstract

As a proactive failure tolerant mechanism in large scale cloud storage systems, drive failure prediction can be used to protect data by early warning before real failures of drives, and therefore improve system dependability and cloud storage service quality. At present, solid state drives (SSDs) are generally widely used in cloud storage systems due to their high performance. SSD failures seriously affect the dependability of the system and the quality of service. Existing proactive failure tolerant mechanisms for storage systems are basically aimed at HDD failure detection and use classification technology (Supervised learning), which relies on enough failure data to establish a classification model.

However, the low failure rate of SSDs leads to a serious imbalance in the ratio of positive and negative samples, which brings a big challenge for establishing a proactive failure tolerance mechanism for SSDs storage systems by using classification technology.In this paper, we propose a proactive failure tolerance mechanism for SSDs storage systems based on unsupervised technology. It only uses data of normal SSDs to train the failure prediction model, which means that our method is not limited by the imbalance in SSDs data.

At the core of our method is the idea to use VAE-LSTM to learn the pattern of normal SSDs, in which case faulty SSDs can be alerted when their patterns are very different from normal ones. Our method can provide early warning of failures, thereby effectively protecting data and improving the quality of cloud storage service. We also propose a drive failure cause location mechanism, which can help operators analyze the modes of failure by providing guiding suggestions. In order to evaluate the effectiveness of our method, we use cross-validation and online testing methods on SSDs data from a technology company. The results show that the FDR and FAR of our method outperform the baselines by 17.25% and 2.39% on average.
A Proactive Failure Tolerant Mechanism for SSDs Storage Systems based on Unsupervised Learning_1
A Proactive Failure Tolerant Mechanism for SSDs Storage Systems based on Unsupervised Learning_2
A Proactive Failure Tolerant Mechanism for SSDs Storage Systems based on Unsupervised Learning_3
  • IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
  • Xuan Yu, Zhilin Teng, Xuhao Fan, Tianchi Liu, Wenbin Chen, Xinger Wang, Zhe Zhao, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2025-10-25
  • Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
  • Meng Wang, Dehai Liang1, Saif M. H. Qaid, Shuangyi Zhao, Yingjie Liu, Zhigang Zang
  • Opto-Electronic Advances
  • 2025-10-25
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
  • Fujie Li, Haoyu Zhang, Zhilan Lu, Li Yao, Yuan Wei, Ziwei Li, Feng Bao, Junwen Zhang, Yingjun Zhou, Nan Chi
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16
  • Halide perovskite volatile unipolar nanomemristor
  • Abolfazl Mahmoodpoor, Prokhor A. Alekseev, Ksenia A. Gasnikova, Kuzmenko Natalia, Artem Larin, Sergey Makarov Aleksandra Furasova
  • Opto-Electronic Advances
  • 2025-10-15
  • Recent advances in exciton-polariton in perovskite
  • Khalil As'ham, Andergachew Mekonnen Berhe, Ibrahim A. M. Al-Ani, Haroldo T. Hattori, Andrey E. Miroshnichenko
  • Opto-Electronic Science
  • 2025-09-25
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25



  • Designing Approximate and Deployable SRPT Scheduler: A Unified Framework                                Context-aware Telco Outdoor Localization
    About
    |
    Contact
    |
    Copyright © PubCard