Year
Month
(Conference Paper) Designing Approximate and Deployable SRPT Scheduler: A Unified Framework
Zhiyuan Wang 王志远 ¹, Jiancheng Ye ², Dong Lin ², Yipei Chen 陈亿沛 ², John C.S. Lui 呂自成 ¹
¹ The Chinese University of Hong Kong
香港中文大学
² Network Technology Lab and Hong Kong Research Center, Huawei Technologies Co., Ltd.
华为技术有限公司 网络科技实验室 香港研发中心
2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), 2021-08-26
Abstract

The scheduling policy installed on switches of datacenters plays a significant role on congestion control. Shortest-Remaining-Processing-Time (SRPT) achieves the near-optimal average message completion time (MCT) in various scenarios, but is difficult to deploy as viewed by the industry. The reasons are two-fold: 1) many commodity switches only provide FIFO queues, and 2) the information of remaining message size is not available.

Recently, the idea of emulating SRPT using only a few FIFO queues and the original message size has been coined as the approximate and deployable SRPT (ADS) design. In this paper, we provide the first theoretical study on ADS design. Specifically, we first characterize a wide range of feasible ADS scheduling policies via a unified framework, and then derive the steady-state MCT and slowdown in the M/G/1 setting. We formulate the optimal ADS design as a non-linear combinatorial optimization problem, which aims to minimize the average MCT given the available FIFO queues. To prevent the starvation of long messages, we also take into account the fairness condition based on the steady-state slowdown.

The optimal ADS design problem is NP-hard in general, and does not exhibit monotonicity or sub-modularity. We leverage its decomposable structure and devise an efficient algorithm to solve the optimal ADS policy. Numerical results based on the realistic heavy-tail message size distribution show that the optimal ADS policy installed on eight FIFO queues is capable of emulating the true SRPT in terms of MCT and slowdown.
Designing Approximate and Deployable SRPT Scheduler: A Unified Framework_1
Designing Approximate and Deployable SRPT Scheduler: A Unified Framework_2
Designing Approximate and Deployable SRPT Scheduler: A Unified Framework_3
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07
  • On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
  • Cheng-Long Zheng, Pei-Nan Ni, Yi-Yang Xie, Patrice Genevet
  • Opto-Electronic Advances
  • 2025-01-07
  • Ferroelectric domain engineering of lithium niobate
  • Jackson J. Chakkoria, Aditya Dubey, Arnan Mitchell, Andreas Boes
  • Opto-Electronic Advances
  • 2025-01-03



  • pSAV: A Practical and Decentralized Inter-AS Source Address Validation                                A Proactive Failure Tolerant Mechanism for SSDs Storage Systems based on Unsupervised Learning
    About
    |
    Contact
    |
    Copyright © PubCard