(Peer-Reviewed) Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage
Xingdong Feng 冯兴东 ¹ ², Tianqi Zhang 张天琪 ¹ ², Xuejun Liu 刘雪军 ³, Fan Zhang 张帆 ³, Jianjun Wang 王建军 ² ⁴, Hong Bao 保宏 ¹ ², Shan Jiang 江山 ¹ ² ³ ⁴, YongAn Huang 黄永安 ³
¹ Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
中国 杭州 西安电子科技大学杭州研究院
² School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
中国 西安 西安电子科技大学机电工程学院
³ State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
中国 武汉 华中科技大学 智能制造装备与技术全国重点实验室
⁴ State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xidian University, Xi'an 710071, China
中国 西安 西安电子科技大学 高性能电子装备机电集成制造全国重点实验室
Opto-Electronic Advances, 2025-04-02
Abstract
The combination of advanced photoelectric detectors has rendered single-band camouflage materials ineffective, necessitating the development of infrared multispectral camouflage. However, the design and fabrication of existing works remain complex as they usually require the integration of multiscale structures. Here, we introduce phase modulation into the infrared camouflage metasurfaces with metal-dielectric-metal configuration, enabling them to achieve camouflage across more bands.
Based on this strategy, a simple but effective single-layer cascaded metasurface is demonstrated for the first time to achieve low reflection at multi-wavelength lasers, low infrared radiation in atmospheric windows, and broadband thermal management. As a proof-of-concept, a 4-inch sample with a minimum linewidth of 1.8 μm is fabricated using photolithography. The excellent infrared multispectral camouflage performance is verified in experiments, showing low reflectance in 0.9–1.6 μm, low infrared emissivity in mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) bands, and high absorptance at the wavelength of 10.6 μm.
Meanwhile, broadband high emissivity in 5–8 μm can provide high-performance radiative heat dissipation. When the input power is 1.57 W∙cm-2, the surface/radiation temperature of the metasurface decreases by 5.3 °C/18.7 °C compared to the reference. The proposed metasurface may trigger further innovation in the design and application of compact multispectral optical devices.
Meta-lens digital image correlation
Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
Opto-Electronic Advances
2025-07-29
Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
Opto-Electronic Science
2025-07-25
Review for wireless communication technology based on digital encoding metasurfaces
Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
Opto-Electronic Advances
2025-07-17