(Preprint) Context-aware Telco Outdoor Localization
Yige Zhang 张奕格 ¹, Weixiong Rao 饶卫雄 ¹, Mingxuan Yuan 袁明轩 ², Jia Zeng 曾嘉 ², Pan Hui 许彬 ³ ⁴
¹ School of Software Engineering, Tongji University, Shanghai, China
中国 上海 同济大学软件学院
² Huawei Noahs Ark Lab, Hong Kong
香港 华为诺亚方舟实验室
³ Department of Computer Science and Engineering, Hong Kong University of Science and Technology
香港科技大学计算机科学与工程系
⁴ Department of Computer Science, University of Helsinki
arXiv, 2021-08-24
Abstract
Recent years have witnessed the fast growth in telecommunication (Telco) techniques from 2G to upcoming 5G. Precise outdoor localization is important for Telco operators to manage, operate and optimize Telco networks. Differing from GPS, Telco localization is a technique employed by Telco operators to localize outdoor mobile devices by using measurement report (MR) data. When given MR samples containing noisy signals (e.g., caused by Telco signal interference and attenuation), Telco localization often suffers from high errors.
To this end, the main focus of this paper is how to improve Telco localization accuracy via the algorithms to detect and repair outlier positions with high errors. Specifically, we propose a context-aware Telco localization technique, namely RLoc, which consists of three main components: a machine-learning-based localization algorithm, a detection algorithm to find flawed samples, and a repair algorithm to replace outlier localization results by better ones (ideally ground truth positions).
Unlike most existing works to detect and repair every flawed MR sample independently, we instead take into account spatio-temporal locality of MR locations and exploit trajectory context to detect and repair flawed positions. Our experiments on the real MR data sets from 2G GSM and 4G LTE Telco networks verify that our work RLoc can greatly improve Telco location accuracy. For example, RLoc on a large 4G MR data set can achieve 32.2 meters of median errors, around 17.4% better than state-of-the-art.
CW laser damage of ceramics induced by air filament
Chuan Guo, Kai Li, Zelin Liu, Yuyang Chen, Junyang Xu, Zhou Li, Wenda Cui, Changqing Song, Cong Wang, Xianshi Jia, Ji'an Duan, Kai Han
Opto-Electronic Advances
2025-06-27
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
Chen Geng, Wang Anqi, Zhang Yi, Zhang Fujun, Xu Dongchen, Liu Yueqi, Zhang Zhi, Yan Zhijun, Li Zhen, Li Hao, Sun Qizhen
Opto-Electronic Science
2025-06-25
Observation of polaronic state assisted sub-bandgap saturable absorption
Li Zhou, Yiduo Wang, Jianlong Kang, Xin Li, Quan Long, Xianming Zhong, Zhihui Chen, Chuanjia Tong, Keqiang Chen, Zi-Lan Deng, Zhengwei Zhang, Chuan-Cun Shu, Yongbo Yuan, Xiang Ni, Si Xiao, Xiangping Li, Yingwei Wang, Jun He
Opto-Electronic Advances
2025-06-19
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
Opto-Electronic Advances
2025-05-27
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
Opto-Electronic Advances
2025-05-27
Integrated photonic polarizers with 2D reduced graphene oxide
Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
Opto-Electronic Science
2025-05-22