Year
Month
(Peer-Reviewed) Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
Hui Li 李辉 ¹, Chenhui Zhao 赵晨辉 ², Jie Li 李杰 ³, Hang Xu 徐航 ¹, Wenhui Xu 许文慧 ¹, Qi Tan 谭琪 ¹, Chunyu Song 宋春宇 ¹, Yun Shen 沈云 ², Jianquan Yao 姚建铨 ¹
¹ Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
中国 天津 天津大学精密仪器与光电子工程学院 光电信息技术教育部重点实验室(天津大学)
² Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
中国 南昌 南昌大学物理与材料学院 物理系
³ Sichuan Meteorological Optoelectronic Sensor Technology and Application Engineering Research Center, Chengdu University of Information Technology, Chengdu 610225, China
中国 成都 成都信息工程大学 四川省气象光电传感器技术及应用工程研究中心
Opto-Electronic Science, 2025-02-19
Abstract

Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves, including control over amplitude, phase, frequency, and polarization. Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation, allowing the implementation of conjugate strategies within orthogonal circularly polarized channels. Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.

Here, spin-selective modulation of terahertz (THz) beams is realized by assembling a pair of meta-atoms with birefringent effects. The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties, which introduce independent parametric factors that elucidate their physical significance.

By arranging the key parameters, the proposed design strategy can be employed to realize independent amplitude and phase manipulation. A series of THz metasurface samples with specific modulation functions are characterized, experimentally demonstrating the accuracy of on-demand manipulation. This research paves the way for all-silicon meta-optics that may have great potential in imaging, sensing and detection.
Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces_1
Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces_2
Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces_3
Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces_4
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25
  • Phase matching sampling algorithm for sampling rate reduction in time division multiplexing optical fiber sensor system
  • Junhui Wu, Zhilin Xu, Yi Shi, Yurong Liang, Qizhen Sun
  • Opto-Electronic Technology
  • 2025-09-18
  • Three-dimensional integrated optical fiber devices: emergence and applications
  • Tingting Yuan, Xiaotong Zhang, Shitai Yang, Donghui Wang, Libo Yuan
  • Opto-Electronic Technology
  • 2025-09-18
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • All-optical digital logic and neuromorphic computing based on multi-wavelength auxiliary and competition in a single microring resonator
  • Qiang Zhang, Yingjun Fang, Ning Jiang, Anran Li, Jiahao Qian, Yiqun Zhang, Gang Hu, Kun Qiu
  • Opto-Electronic Science
  • 2025-08-28
  • Fast step heterodyne light-induced thermoelastic spectroscopy gas sensing based on a quartz tuning fork with high-frequency of 100 kHz
  • Yuanzhi Wang Ying He, Shunda Qiao, Xiaonan Liu, Chu Zhan, Xiaoming Duan, Yufei Ma
  • Opto-Electronic Advances
  • 2025-08-28
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25



  • Design, setup, and facilitation of the speckle structured illumination endoscopic system                                Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
    About
    |
    Contact
    |
    Copyright © PubCard