Year
Month
(Peer-Reviewed) Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
Xiaowen Li 李晓温 ¹ ², Jie Sheng 盛洁 ², Zhengji Wen 文政绩 ³, Fangyuan Li 李方园 ², Xiran Huang 黄熙然 ², Mingqing Zhang 张名青 ¹, Yi Zhang 张毅 ², Duo Cao 曹铎 ², Xi Shi 石溪 ², Feng Liu 刘锋 ², Jiaming Hao 郝加明 ¹
¹ Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai 200433, China
中国 上海 复旦大学 光电研究院 材料科学系 上海市智能光电与感知前沿科学研究基地
² Department of Physics, Shanghai Normal University, Shanghai 200234, China
中国 上海 上海师范大学物理系
³ State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
中国 上海 中国科学院上海技术物理研究所 红外物理国家重点实验室
Opto-Electronic Advances, 2025-03-28
Abstract

Phase singularities (PSs) in topological darkness-based sensors have received significant attention in optical sensing due to their rapid, ultra-sensitive, and label-free detection capabilities. Here, we present both experimental and theoretical investigations of an ultrasensitive and multiplexed phase-sensitive sensor utilizing dual topological PSs in the visible and near-infrared regions.

This sensor uses a simple structure, which consists of an ultra-thin highly absorbing film deposited on a metal substrate. We demonstrate the achievement of dual-polarization darkness points for s- and p-polarizations at different incident angles. Furthermore, we theoretically explain the double topological PSs accompanied by a perfect ±π-jump near a zero-reflection point, based on the temporal coupled-mode formalism.

To validate its multifunctional capabilities, humidity sensing tests were carried out. The results demonstrate that the sensor has a detection limit reaching the level of 0.12 ‰. These findings go beyond the scope of conventional interference optical coatings and highlight the potential applications of this technology in gas sensing and biosensing domains.
Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing_1
Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing_2
Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing_3
Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing_4
  • Filament based ionizing radiation sensing
  • Pengfei Qi, Haiyi Liu, Jiewei Guo, Nan Zhang, Lu Sun, Shishi Tao, Binpeng Shang, Lie Lin Weiwei Liu
  • Opto-Electronic Advances
  • 2025-12-25
  • Separation and identification of mixed signal for distributed acoustic sensor using deep learning
  • Huaxin Gu, Jingming Zhang, Xingwei Chen, Feihong Yu, Deyu Xu, Shuaiqi Liu, Weihao Lin, Xiaobing Shi, Zixing Huang, Xiongji Yang, Qingchang Hu, Liyang Shao
  • Opto-Electronic Advances
  • 2025-11-25
  • Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
  • Yongwei Yao, Yaping Zhang, Huanrong He, Xianfeng David Gu, Daping Chu, Ting-Chung Poon
  • Opto-Electronic Advances
  • 2025-11-25
  • Partially coherent optical chip enables physical-layer public-key encryption
  • Bo Wu, Wenkai Zhang, Hailong Zhou, Jianji Dong, Yilun Wang, Xinliang Zhang
  • Opto-Electronic Advances
  • 2025-11-25
  • Advanced applications of pulsed laser deposition in electrocatalysts for hydrogen-electric conversion systems
  • Yuanyuan Zhou, Yong Wang, Ke Zhang, Huaqian Leng, Peter Müller-Buschbaum, Nian Li, Liang Qiao
  • Opto-Electronic Advances
  • 2025-11-25
  • A review on optical torques: from engineered light fields to objects
  • Tao He, Jingyao Zhang, Din Ping Tsai, Junxiao Zhou, Haiyang Huang, Weicheng Yi, Zeyong Wei Yan Zu, Qinghua Song, Zhanshan Wang, Cheng-Wei Qiu, Yuzhi Shi, Xinbin Cheng
  • Opto-Electronic Science
  • 2025-11-25
  • IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
  • Xuan Yu, Zhilin Teng, Xuhao Fan, Tianchi Liu, Wenbin Chen, Xinger Wang, Zhe Zhao, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2025-10-25
  • Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
  • Meng Wang, Dehai Liang1, Saif M. H. Qaid, Shuangyi Zhao, Yingjie Liu, Zhigang Zang
  • Opto-Electronic Advances
  • 2025-10-25
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
  • Fujie Li, Haoyu Zhang, Zhilan Lu, Li Yao, Yuan Wei, Ziwei Li, Feng Bao, Junwen Zhang, Yingjun Zhou, Nan Chi
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16



  • Soliton microcombs in optical microresonators with perfect spectral envelopes                                Enhanced photoacoustic microscopy with physics-embedded degeneration learning
    About
    |
    Contact
    |
    Copyright © PubCard