Year
Month
(Peer-Reviewed) Enhanced photoacoustic microscopy with physics-embedded degeneration learning
Haigang Ma 马海钢 ¹ ² ³, Shili Ren 任世利 ¹ ² ³, Xiang Wei 魏翔 ¹ ² ³, Yinshi Yu 于音什 ¹ ² ³, Jiaming Qian 钱佳铭 ¹ ² ³, Qian Chen 陈钱 ¹ ³, Chao Zuo 左超 ¹ ² ³
¹ Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
中国 南京 南京理工大学 电子工程与光电技术学院 智能计算成像实验室
² Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing 210019, China
中国 南京 南京理工大学 智能计算成像实验室
³ Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing 210094, China
中国 南京 江苏省光谱成像与智能感知重点实验室
Opto-Electronic Advances, 2024-03-28
Abstract

Deep learning (DL) is making significant inroads into biomedical imaging as it provides novel and powerful ways of accurately and efficiently improving the image quality of photoacoustic microscopy (PAM). Off-the-shelf DL models, however, do not necessarily obey the fundamental governing laws of PAM physical systems, nor do they generalize well to scenarios on which they have not been trained.

In this work, a physics-embedded degeneration learning (PEDL) approach is proposed to enhance the image quality of PAM with a self-attention enhanced U-Net network, which obtains greater physical consistency, improves data efficiency, and higher adaptability. The proposed method is demonstrated on both synthetic and real datasets, including animal experiments in vivo (blood vessels of mouse's ear and brain). And the results show that compared with previous DL methods, the PEDL algorithm exhibits good performance in recovering PAM images qualitatively and quantitatively.

It overcomes the challenges related to training data, accuracy, and robustness which a typical data-driven approach encounters, whose exemplary application envisions to provide a new perspective for existing DL tools of enhanced PAM.
Enhanced photoacoustic microscopy with physics-embedded degeneration learning_1
Enhanced photoacoustic microscopy with physics-embedded degeneration learning_2
Enhanced photoacoustic microscopy with physics-embedded degeneration learning_3
Enhanced photoacoustic microscopy with physics-embedded degeneration learning_4
  • Filament based ionizing radiation sensing
  • Pengfei Qi, Haiyi Liu, Jiewei Guo, Nan Zhang, Lu Sun, Shishi Tao, Binpeng Shang, Lie Lin Weiwei Liu
  • Opto-Electronic Advances
  • 2025-12-25
  • Separation and identification of mixed signal for distributed acoustic sensor using deep learning
  • Huaxin Gu, Jingming Zhang, Xingwei Chen, Feihong Yu, Deyu Xu, Shuaiqi Liu, Weihao Lin, Xiaobing Shi, Zixing Huang, Xiongji Yang, Qingchang Hu, Liyang Shao
  • Opto-Electronic Advances
  • 2025-11-25
  • Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
  • Yongwei Yao, Yaping Zhang, Huanrong He, Xianfeng David Gu, Daping Chu, Ting-Chung Poon
  • Opto-Electronic Advances
  • 2025-11-25
  • Partially coherent optical chip enables physical-layer public-key encryption
  • Bo Wu, Wenkai Zhang, Hailong Zhou, Jianji Dong, Yilun Wang, Xinliang Zhang
  • Opto-Electronic Advances
  • 2025-11-25
  • Advanced applications of pulsed laser deposition in electrocatalysts for hydrogen-electric conversion systems
  • Yuanyuan Zhou, Yong Wang, Ke Zhang, Huaqian Leng, Peter Müller-Buschbaum, Nian Li, Liang Qiao
  • Opto-Electronic Advances
  • 2025-11-25
  • A review on optical torques: from engineered light fields to objects
  • Tao He, Jingyao Zhang, Din Ping Tsai, Junxiao Zhou, Haiyang Huang, Weicheng Yi, Zeyong Wei Yan Zu, Qinghua Song, Zhanshan Wang, Cheng-Wei Qiu, Yuzhi Shi, Xinbin Cheng
  • Opto-Electronic Science
  • 2025-11-25
  • IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
  • Xuan Yu, Zhilin Teng, Xuhao Fan, Tianchi Liu, Wenbin Chen, Xinger Wang, Zhe Zhao, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2025-10-25
  • Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
  • Meng Wang, Dehai Liang1, Saif M. H. Qaid, Shuangyi Zhao, Yingjie Liu, Zhigang Zang
  • Opto-Electronic Advances
  • 2025-10-25
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
  • Fujie Li, Haoyu Zhang, Zhilan Lu, Li Yao, Yuan Wei, Ziwei Li, Feng Bao, Junwen Zhang, Yingjun Zhou, Nan Chi
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16



  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing                                Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
    About
    |
    Contact
    |
    Copyright © PubCard