Year
Month
(Peer-Reviewed) Integrated photonic synapses, neurons, memristors, and neural networks for photonic neuromorphic computing
Shufei Han ¹ ², Weihong Shen ¹ ², Min Gu ¹ ², Qiming Zhang ¹ ²
¹ School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
中国 上海 上海理工大学智能科技学院
² Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
中国 上海 上海理工大学光子芯片研究所
Opto-Electronic Technology,
Abstract

Rising demands for bandwidth, speed, and energy efficiency are reshaping the landscape of computing beyond the limits of von Neumann electronics. Neuromorphic photonics—using light to emulate neural computation—offers ultrafast, massively parallel, and low-energy information processing, positioning integrated photonic neural networks (IPNNs) as promising hardware for next-generation artificial intelligence (AI).

By combining the architectural efficiency of neuromorphic models with the physical advantages of integrated photonics, IPNNs enable high-speed and programmable linear operations during the in-plane optical transmission, while leaving room for compact and reconfigurable on-chip optical nonlinearities and memory functions. Firstly, we review the concepts and principles of key building blocks in IPNN, that are photonic synapses, neurons, and photonic memristors which offer optical memory and storage capabilities.

And then, we summarize the representative IPNN architectures and their recent advances, including coherent, parallel, diffractive, and reservoir computing, for photonic neuromorphic computing with high throughput and high efficiency. Finally, we outline practical considerations—calibration and stability of large-scale networks, routes toward co-integration with electronics, diffractive–interferometric hybrid architectures, and programmable photonic architectures for general AI purposes.

We highlight a forward outlook on enabling IPNN with low energy consumption, robust photonic operations, and efficient training strategies, aiming to guide the maturation of general-purpose, low-power photonic AI.
Integrated photonic synapses, neurons, memristors, and neural networks for photonic neuromorphic computing_1
Integrated photonic synapses, neurons, memristors, and neural networks for photonic neuromorphic computing_2
Integrated photonic synapses, neurons, memristors, and neural networks for photonic neuromorphic computing_3
Integrated photonic synapses, neurons, memristors, and neural networks for photonic neuromorphic computing_4
  • A review on optical torques: from engineered light fields to objects
  • Tao He, Jingyao Zhang, Din Ping Tsai, Junxiao Zhou, Haiyang Huang, Weicheng Yi, Zeyong Wei Yan Zu, Qinghua Song, Zhanshan Wang, Cheng-Wei Qiu, Yuzhi Shi, Xinbin Cheng
  • Opto-Electronic Science
  • 2025-11-25
  • IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
  • Xuan Yu, Zhilin Teng, Xuhao Fan, Tianchi Liu, Wenbin Chen, Xinger Wang, Zhe Zhao, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2025-10-25
  • Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
  • Meng Wang, Dehai Liang1, Saif M. H. Qaid, Shuangyi Zhao, Yingjie Liu, Zhigang Zang
  • Opto-Electronic Advances
  • 2025-10-25
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
  • Fujie Li, Haoyu Zhang, Zhilan Lu, Li Yao, Yuan Wei, Ziwei Li, Feng Bao, Junwen Zhang, Yingjun Zhou, Nan Chi
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16
  • Halide perovskite volatile unipolar nanomemristor
  • Abolfazl Mahmoodpoor, Prokhor A. Alekseev, Ksenia A. Gasnikova, Kuzmenko Natalia, Artem Larin, Sergey Makarov Aleksandra Furasova
  • Opto-Electronic Advances
  • 2025-10-15
  • Recent advances in exciton-polariton in perovskite
  • Khalil As'ham, Andergachew Mekonnen Berhe, Ibrahim A. M. Al-Ani, Haroldo T. Hattori, Andrey E. Miroshnichenko
  • Opto-Electronic Science
  • 2025-09-25
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25



  • Decoding subject-invariant emotional information from cardiac signals detected by photonic sensing system                                Photoacoustic spectroscopy and light-induced thermoelastic spectroscopy based on inverted-triangular lithium niobate tuning fork
    About
    |
    Contact
    |
    Copyright © PubCard