Year
Month
(Peer-Reviewed) Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
Fujie Li 李甫杰 ¹, Haoyu Zhang 张昊宇 ¹, Zhilan Lu 卢芝蓝 ¹, Li Yao 姚力 ¹, Yuan Wei 魏圆 ¹, Ziwei Li 李子薇 ¹, Feng Bao 鲍峰 ¹, Junwen Zhang 张俊文 ¹, Yingjun Zhou 周盈君 ¹, Nan Chi 迟楠 ¹ ²
¹ Key Laboratory for the Information Science of Electromagnetic Waves (MoE), Department of Communication Science and Engineering, Fudan University, Shanghai 200433, China
中国 上海 复旦大学电磁波信息科学教育部重点实验室
² Shanghai Engineering Research Center of Low-Earth-Orbit Satellite Communication and Applications, and Shanghai Collaborative Innovation Center of Low-Earth-Orbit Satellite Communication Technology, Shanghai 200433, China
中国 上海 上海低轨卫星通信与应用工程技术研究中心 上海市低轨卫星通信技术协同创新中心
Opto-Electronic Advances, 2025-10-25
Abstract

Single-pixel imaging (SPI) is a prominent scattering media imaging technique that allows image transmission via one-dimensional detection under structured illumination, with applications spanning from long-range imaging to microscopy. Recent advancements leveraging deep learning (DL) have significantly improved SPI performance, especially at low compression ratios. However, most DL-based SPI methods proposed so far rely heavily on extensive labeled datasets for supervised training, which are often impractical in real-world scenarios.

Here, we propose an unsupervised learning-enabled label-free SPI method for resilient information transmission through unknown dynamic scattering media. Additionally, we introduce a physics-informed autoencoder framework to optimize encoding schemes, further enhancing image quality at low compression ratios. Simulation and experimental results demonstrate that high-efficiency data transmission with structural similarity exceeding 0.9 is achieved through challenging turbulent channels.

Moreover, experiments demonstrate that in a 5 m underwater dynamic turbulent channel, USAF target imaging quality surpasses traditional methods by over 13 dB. The compressive encoded transmission of 720×720 resolution video exceeding 30 seconds with great fidelity is also successfully demonstrated. These preliminary results suggest that our proposed method opens up a new paradigm for resilient information transmission through unknown dynamic scattering media and holds potential for broader applications within many other scattering media imaging technologies.
Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media_1
Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media_2
Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media_3
Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media_4
  • A review on optical torques: from engineered light fields to objects
  • Tao He, Jingyao Zhang, Din Ping Tsai, Junxiao Zhou, Haiyang Huang, Weicheng Yi, Zeyong Wei Yan Zu, Qinghua Song, Zhanshan Wang, Cheng-Wei Qiu, Yuzhi Shi, Xinbin Cheng
  • Opto-Electronic Science
  • 2025-11-25
  • IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
  • Xuan Yu, Zhilin Teng, Xuhao Fan, Tianchi Liu, Wenbin Chen, Xinger Wang, Zhe Zhao, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2025-10-25
  • Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
  • Meng Wang, Dehai Liang1, Saif M. H. Qaid, Shuangyi Zhao, Yingjie Liu, Zhigang Zang
  • Opto-Electronic Advances
  • 2025-10-25
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16
  • Halide perovskite volatile unipolar nanomemristor
  • Abolfazl Mahmoodpoor, Prokhor A. Alekseev, Ksenia A. Gasnikova, Kuzmenko Natalia, Artem Larin, Sergey Makarov Aleksandra Furasova
  • Opto-Electronic Advances
  • 2025-10-15
  • Recent advances in exciton-polariton in perovskite
  • Khalil As'ham, Andergachew Mekonnen Berhe, Ibrahim A. M. Al-Ani, Haroldo T. Hattori, Andrey E. Miroshnichenko
  • Opto-Electronic Science
  • 2025-09-25
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25



  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities                                Phase matching sampling algorithm for sampling rate reduction in time division multiplexing optical fiber sensor system
    About
    |
    Contact
    |
    Copyright © PubCard