Year
Month
(Peer-Reviewed) Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
Yifan Qi 祁一凡 ¹, Gongcheng Yue 岳龚成 ², Ting Hao 郝婷 ³, Yang Li 李杨 ¹
¹ State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
中国 广州 中山大学电子与信息工程学院 光电材料与技术国家重点实验室
² State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
中国 北京 清华大学精密仪器系 精密测试技术及仪器全国重点实验室
³ Advanced Fiber Resources (Zhuhai), Ltd., Zhuhai 519080, China
中国 珠海 珠海光库科技股份有限公司
Opto-Electronic Advances, 2025-09-25
Abstract

Novel thin films consisting of optical materials such as lithium niobate and barium titanate enable various high-performance integrated photonic devices. However, the nanofabrication of these devices requires high-quality etching of these thin films, necessitating the long-term development of the fabrication recipe and specialized equipment. Here we present a strong-confinement low-index-rib-loaded waveguide structure as the building block of various passive and active integrated photonic devices based on novel thin films.

By optimizing this low-index-rib-loaded waveguide structure without etching the novel thin film, we can simultaneously realize strong optical power confinement in the thin film, low optical propagation loss, and strong electro-optic coupling for the fundamental transverse electric mode. Based on our low-index-rib-loaded waveguide structure, we designed and fabricated a thin film lithium niobate (TFLN) modulator, featuring a 3-dB modulation bandwidth over 110 GHz and a voltage-length product as low as 2.26 V·cm, which is comparable to those of the state-of-the-art etched TFLN modulators.

By alleviating the etching of novel thin films, the proposed structure opens up new ways of fast proof-of-concept demonstration and even mass production of high-performance integrated electro-optic and nonlinear devices based on novel thin films.
Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics_1
Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics_2
Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics_3
Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics_4
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
  • Fujie Li, Haoyu Zhang, Zhilan Lu, Li Yao, Yuan Wei, Ziwei Li, Feng Bao, Junwen Zhang, Yingjun Zhou, Nan Chi
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16
  • Halide perovskite volatile unipolar nanomemristor
  • Abolfazl Mahmoodpoor, Prokhor A. Alekseev, Ksenia A. Gasnikova, Kuzmenko Natalia, Artem Larin, Sergey Makarov Aleksandra Furasova
  • Opto-Electronic Advances
  • 2025-10-15
  • Recent advances in exciton-polariton in perovskite
  • Khalil As'ham, Andergachew Mekonnen Berhe, Ibrahim A. M. Al-Ani, Haroldo T. Hattori, Andrey E. Miroshnichenko
  • Opto-Electronic Science
  • 2025-09-25
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25
  • Parallel all-optical encoded CDMA-driven anti-interference LiDAR for 78 MHz point acquisition
  • Shujian Gong, Peng Tian, Yinghui Guo, Xiaoyin Li, Mingbo Pu, Qi Zhang, Yanqin Wang, Heping Liu, Xiangang Luo
  • Opto-Electronic Technology
  • 2025-09-22
  • Enrichment strategies in surface-enhanced Raman scattering: theoretical insights and optical design for enhanced light-matter interaction
  • Zhiyang Pei, Chang Ji, Mingrui Shao, Yang Wu, Xiaofei Zhao, Baoyuan Man, Zhen Li, Jing Yu, Chao Zhang
  • Opto-Electronic Science
  • 2025-09-18
  • Phase matching sampling algorithm for sampling rate reduction in time division multiplexing optical fiber sensor system
  • Junhui Wu, Zhilin Xu, Yi Shi, Yurong Liang, Qizhen Sun
  • Opto-Electronic Technology
  • 2025-09-18



  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy                                Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
    About
    |
    Contact
    |
    Copyright © PubCard