Year
Month
(Peer-Reviewed) Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
Desheng Li 李德胜 ¹, Huanrong Xie ², Chengde Gao 高成德 ¹, Huan Jiang ¹, Liyuan Wang ¹, Cijun Shuai 帅词俊 ¹ ³
¹ State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
中国 长沙 中南大学机电工程学院 极端服役性能精准制造全国重点实验室
² Dundee International Institute, Central South University, Changsha 410083, China
中国 长沙 中南大学邓迪国际学院
³ Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China
中国 南昌 江西理工大学植入医疗器械增材制造江西省重点实验室
Opto-Electronic Advances, 2025-09-25
Abstract

Titanium (Ti) is a promising candidate for biomedical implants due to lightweight, superior corrosion resistance and biocompatibility. Nevertheless, pure Ti is confronted with poor wear resistance which poses a profound bottleneck for orthopedic implant applications. In this work, a novel and feasible route of mechanical milling (MM) and laser powder bed fusion (LPBF) was first developed for architecting highly tunable heterostructure in pure Ti, aiming to overcome wear resistance dilemma.

During MM process, a spatial core-shell heterostructure within Ti particle was triggered by manipulating gradient and intense plastic deformation, accompanied with pre-existing dislocations. In subsequent LPBF process, the highly transient-melting kinetics and localized nature effectively perpetuated grain heterogeneity, hence creating a harmonic heterostructure within consolidated pure Ti. Consequently, the heterostructured Ti exhibited an excellent enhanced wear resistance (33.7%) compared to the homogeneous counterpart, which was attributed to a marvelous strength-plasticity synergy motivated by the hetero-deformation induced strengthening and strain-hardening.

Furthermore, back-stress caused by geometrical necessary dislocation pile-ups offset partial wear shear-stress, also contributing to wear resistance enhancement. This study not only provides a manoeuvrable and paradigm route to fabricate Ti with conspicuous strength-plasticity synergy and wear resistance, but also sheds light on developing and extending cutting-edge biomedical implant applications.
Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy_1
Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy_2
Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy_3
Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy_4
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
  • Fujie Li, Haoyu Zhang, Zhilan Lu, Li Yao, Yuan Wei, Ziwei Li, Feng Bao, Junwen Zhang, Yingjun Zhou, Nan Chi
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16
  • Halide perovskite volatile unipolar nanomemristor
  • Abolfazl Mahmoodpoor, Prokhor A. Alekseev, Ksenia A. Gasnikova, Kuzmenko Natalia, Artem Larin, Sergey Makarov Aleksandra Furasova
  • Opto-Electronic Advances
  • 2025-10-15
  • Recent advances in exciton-polariton in perovskite
  • Khalil As'ham, Andergachew Mekonnen Berhe, Ibrahim A. M. Al-Ani, Haroldo T. Hattori, Andrey E. Miroshnichenko
  • Opto-Electronic Science
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25
  • Parallel all-optical encoded CDMA-driven anti-interference LiDAR for 78 MHz point acquisition
  • Shujian Gong, Peng Tian, Yinghui Guo, Xiaoyin Li, Mingbo Pu, Qi Zhang, Yanqin Wang, Heping Liu, Xiangang Luo
  • Opto-Electronic Technology
  • 2025-09-22
  • Enrichment strategies in surface-enhanced Raman scattering: theoretical insights and optical design for enhanced light-matter interaction
  • Zhiyang Pei, Chang Ji, Mingrui Shao, Yang Wu, Xiaofei Zhao, Baoyuan Man, Zhen Li, Jing Yu, Chao Zhang
  • Opto-Electronic Science
  • 2025-09-18
  • Phase matching sampling algorithm for sampling rate reduction in time division multiplexing optical fiber sensor system
  • Junhui Wu, Zhilin Xu, Yi Shi, Yurong Liang, Qizhen Sun
  • Opto-Electronic Technology
  • 2025-09-18



  • Recent advances in exciton-polariton in perovskite                                Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
    About
    |
    Contact
    |
    Copyright © PubCard