(Peer-Reviewed) Parallel all-optical encoded CDMA-driven anti-interference LiDAR for 78 MHz point acquisition
Shujian Gong ¹ ² ³, Peng Tian ¹ ², Yinghui Guo ¹ ² ³ ⁴, Xiaoyin Li ¹ ², Mingbo Pu ¹ ² ³ ⁴, Qi Zhang ¹ ², Yanqin Wang ¹ ³, Heping Liu ⁵, Xiangang Luo ¹ ² ³
¹ State Key Laboratory of Optical Field Manipulation Science and Technology, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光电技术研究所 光场调控科学技术全国重点实验室
² Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光电技术研究所 矢量光场研究中心
³ College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学材料科学与光电技术学院
⁴ Sichuan Provincial Engineering Research Center of Digital Materials, Chengdu, 610213, China
中国 成都 四川省数字材料工程研究中心
⁵ Tianfu Xinglong Lake Laboratory, Chengdu, 610213, China
中国 成都 天府兴隆湖实验室
Opto-Electronic Technology, 2025-09-22
Abstract
High-speed, precise 3D sensing is essential for autonomous driving, robotics, and remote sensing, with light detection and ranging (LiDAR) as the leading technology. Nevertheless, single-channel LiDAR is bottlenecked by the light’s round-trip delay, limiting its point acquisition rate (PAR). While parallel detection can overcome this, current solutions either require multiple detectors—adding complexity—or are hampered by electronic encoder speeds, restricting scalability and resolution.
Here, we propose a parallel anti-interference LiDAR architecture based on code-division multiple access (CDMA) with all-optical encoding. A broadband source is split by wavelength-division multiplexing (WDM) into two spectral channels, each encoded with an orthogonal sequence via fiber splitters. A single-pixel photodetector captures mixed echoes, and matched filtering separates the channels for precise time-of-flight (TOF) extraction—achieving parallel detection with minimal hardware. Experimentally, operating at a 25.6 ns emission period, the system attains a dual-channel PAR of 78 MHz (ambiguity distance of 3.84 m) with ~2 mm ranging precision (standard deviation) under motion.
Furthermore, even at an extremely low signal-to-interference ratio (SIR) of −13 dB, the scheme retains over 50% valid demodulated points, validating its superior interference resilience. This low-complexity, highly integrable architecture establishes a critical foundation for ultrafast, high-precision, anti-interference 3D imaging in autonomous vehicles, drones, and robotics.
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
Opto-Electronic Advances
2025-09-25
Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
Opto-Electronic Advances
2025-09-25