(Peer-Reviewed) Development of a double-layer shaking table for large-displacement high-frequency excitation
Pan Peng 潘鹏 ¹ ², Guo Youming 郭又铭 ², Kang Yingjie 康迎杰 ², Wang Tao 王涛 ¹, Han Qinghua 韩庆华 ³
¹ Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Sanhe, 065201, China
中国 三河 中国地震局工程力学研究所 地震工程与工程振动重点实验室
² Department of Civil Engineering, Tsinghua University, Beijing, 100084, China
中国 北京 清华大学土木工程系
³ School of Civil Engineering, Tianjin University, Tianjin, 300350, China
天津大学建筑工程学院
Abstract
It is difficult to conduct shaking table tests that require large-displacement high-frequency seismic excitation due to the limited capacity of existing electrohydraulic servo systems. To address this problem, a double-layer shaking table (DLST) is proposed.
The DLST has two layers of one table each (i.e., an upper table and lower table) and aims at reproducing target seismic excitation on the upper table. The original signal is separated into two signals (i.e., a high-frequency signal and low-frequency signal) through a fast Fourier transform/inverse fast Fourier transform process, and these signals are applied to the two tables separately.
The actuators connected to different tables only need to generate large-displacement low-frequency or small-displacement high-frequency movements. The three-variable control method is used to generate large-displacement but low-frequency motion of the lower table and high-frequency but small-displacement motion of the upper table relative to the table beneath.
A series of simulations are carried out using MATLAB/Simulink. The simulation results suggest that the DLST can successfully generate large-displacement high-frequency excitation. The control strategy in which the lower table tracks the low-frequency signal and the upper table tracks the original signal is recommended.
CW laser damage of ceramics induced by air filament
Chuan Guo, Kai Li, Zelin Liu, Yuyang Chen, Junyang Xu, Zhou Li, Wenda Cui, Changqing Song, Cong Wang, Xianshi Jia, Ji'an Duan, Kai Han
Opto-Electronic Advances
2025-06-27
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
Chen Geng, Wang Anqi, Zhang Yi, Zhang Fujun, Xu Dongchen, Liu Yueqi, Zhang Zhi, Yan Zhijun, Li Zhen, Li Hao, Sun Qizhen
Opto-Electronic Science
2025-06-25
Observation of polaronic state assisted sub-bandgap saturable absorption
Li Zhou, Yiduo Wang, Jianlong Kang, Xin Li, Quan Long, Xianming Zhong, Zhihui Chen, Chuanjia Tong, Keqiang Chen, Zi-Lan Deng, Zhengwei Zhang, Chuan-Cun Shu, Yongbo Yuan, Xiang Ni, Si Xiao, Xiangping Li, Yingwei Wang, Jun He
Opto-Electronic Advances
2025-06-19
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
Opto-Electronic Advances
2025-05-27
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
Opto-Electronic Advances
2025-05-27