Year
Month
(Peer-Reviewed) Parametric study on the flutter sensitivity of a wide-chord hollow fan blade
Xiaojie Zhang ¹, Yanrong Wang 王延荣 ¹ ², Weiyu Chen 陈威宇 ¹, Xianghua Jiang 蒋向华 ¹ ²
¹ School of Energy and Power Engineering, Beihang University, Beijing 100083, China
中国 北京 北京航空航天大学能源与动力工程学院
² Jiangxi Research Institute Beihang University, Nanchang 330096, China
中国 南昌 北京航空航天大学江西研究院
Abstract

In recent years, the hollow fan blades have been widely used to meet the demand for light weight and good performance of the aero-engine. However, the relationship between the hollow structure and the aeroelastic stability has not been studied yet in the open literature.

In this paper, it has been investigated for an H-shaped hollow fan blade. Before studying the flutter behavior, the methods of parametric modeling and auto-generation of Finite Element Model (FEM) are presented. The influence of the feature parameters on the vibration frequency and mode shape (as the input of flutter calculation) of the first three modes are analyzed by the Orthogonal Experimental Design (OED) method.

The results show that the parameters have a more remarkable impact on the first torsional mode and thus it is concerned in the flutter sensitivity analysis. Compared with the solid blade, the minimum aerodynamic damping of the hollow blade decreases, indicating that the hollow structure makes the aeroelastic stability worse.

For the parameters describing the hollow section, the rib number N has the greatest influence on the minimum aerodynamic damping, followed by the wall thickness W5. For the parameters in the height of hollow segment, the aerodynamic damping increases with the increase of parameters M1 and M2. This means that reducing the height of the hollow segment is helpful to improve the aeroelastic stability.

Compared with the impact of parameters in hollow section, the variation of aerodynamic damping caused by the height of the hollow segment is small.
Parametric study on the flutter sensitivity of a wide-chord hollow fan blade_1
Parametric study on the flutter sensitivity of a wide-chord hollow fan blade_2
Parametric study on the flutter sensitivity of a wide-chord hollow fan blade_3
Parametric study on the flutter sensitivity of a wide-chord hollow fan blade_4
  • Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
  • Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
  • Opto-Electronic Advances
  • 2025-05-27
  • Spectrally extended line field optical coherence tomography angiography
  • Si Chen, Kan Lin, Xi Chen, Yukun Wang, Chen Hsin Sun, Jia Qu, Xin Ge, Xiaokun Wang, Linbo Liu
  • Opto-Electronic Advances
  • 2025-05-27
  • Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
  • Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
  • Opto-Electronic Advances
  • 2025-05-27
  • Integrated photonic polarizers with 2D reduced graphene oxide
  • Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
  • Opto-Electronic Science
  • 2025-05-22
  • Tip-enhanced Raman scattering of glucose molecules
  • Zhonglin Xie, Chao Meng, Donghua Yue, Lei Xu, Ting Mei, Wending Zhang
  • Opto-Electronic Science
  • 2025-05-22
  • Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
  • Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
  • Opto-Electronic Science
  • 2025-04-25
  • Reconfigurable origami chiral response for holographic imaging and information encryption
  • Zhibiao Zhu, Yongfeng Li, Jiafu Wang, Ze Qin, Lixin Jiang, Yang Chen, Shaobo Qu
  • Opto-Electronic Science
  • 2025-04-25
  • Single-layer, cascaded and broadband-heat-dissipation metasurface for multi-wavelength lasers and infrared camouflage
  • Xingdong Feng, Tianqi Zhang, Xuejun Liu, Fan Zhang, Jianjun Wang, Hong Bao, Shan Jiang, YongAn Huang
  • Opto-Electronic Advances
  • 2025-04-02
  • Phase reconstruction via metasurface-integrated quantum analog operation
  • Qiuying Li, Minggui Liang, Shuoqing Liu, Jiawei Liu, Shizhen Chen, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Advances
  • 2025-04-02
  • Full-dimensional complex coherence properties tomography for multi-cipher information security
  • Yonglei Liu, Siting Dai, Yimeng Zhu, Yahong Chen, Peipei Peng, Yangjian Cai, Fei Wang
  • Opto-Electronic Advances
  • 2025-03-31
  • Quantitative detection of trace nanoplastics (down to 50 nm) via surface-enhanced raman scattering based on the multiplex-feature coffee ring
  • Xinao Lin, Fengcai Lei, Xiu Liang, Yang Jiao, Xiaofei Zhao, Zhen Li, Chao Zhang, Jing Yu
  • Opto-Electronic Advances
  • 2025-03-28
  • Tunable vertical cavity microlasers based on MAPbI₃ phase change perovskite
  • Rongzi Wang, Ying Su, Hongji Fan, Chengxiang Qi, Shuang Zhang, Tun Cao
  • Opto-Electronic Advances
  • 2025-03-28



  • Development of a double-layer shaking table for large-displacement high-frequency excitation                                Deep-learning-based ciphertext-only attack on optical double random phase encryption
    About
    |
    Contact
    |
    Copyright © PubCard