Year
Month
(Peer-Reviewed) Parametric study on the flutter sensitivity of a wide-chord hollow fan blade
Xiaojie Zhang ¹, Yanrong Wang 王延荣 ¹ ², Weiyu Chen 陈威宇 ¹, Xianghua Jiang 蒋向华 ¹ ²
¹ School of Energy and Power Engineering, Beihang University, Beijing 100083, China
中国 北京 北京航空航天大学能源与动力工程学院
² Jiangxi Research Institute Beihang University, Nanchang 330096, China
中国 南昌 北京航空航天大学江西研究院
Abstract

In recent years, the hollow fan blades have been widely used to meet the demand for light weight and good performance of the aero-engine. However, the relationship between the hollow structure and the aeroelastic stability has not been studied yet in the open literature.

In this paper, it has been investigated for an H-shaped hollow fan blade. Before studying the flutter behavior, the methods of parametric modeling and auto-generation of Finite Element Model (FEM) are presented. The influence of the feature parameters on the vibration frequency and mode shape (as the input of flutter calculation) of the first three modes are analyzed by the Orthogonal Experimental Design (OED) method.

The results show that the parameters have a more remarkable impact on the first torsional mode and thus it is concerned in the flutter sensitivity analysis. Compared with the solid blade, the minimum aerodynamic damping of the hollow blade decreases, indicating that the hollow structure makes the aeroelastic stability worse.

For the parameters describing the hollow section, the rib number N has the greatest influence on the minimum aerodynamic damping, followed by the wall thickness W5. For the parameters in the height of hollow segment, the aerodynamic damping increases with the increase of parameters M1 and M2. This means that reducing the height of the hollow segment is helpful to improve the aeroelastic stability.

Compared with the impact of parameters in hollow section, the variation of aerodynamic damping caused by the height of the hollow segment is small.
Parametric study on the flutter sensitivity of a wide-chord hollow fan blade_1
Parametric study on the flutter sensitivity of a wide-chord hollow fan blade_2
Parametric study on the flutter sensitivity of a wide-chord hollow fan blade_3
Parametric study on the flutter sensitivity of a wide-chord hollow fan blade_4
  • Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters
  • Yinan Zhang, Yinggang Chen, Tong Wang, Qian Zhu, Min Gu
  • Opto-Electronic Advances
  • 2024-03-12
  • Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
  • Yichao Liu, Xiaomin Ma, Kun Chao, Fei Sun, Zihao Chen, Jinyuan Shan, Hanchuan Chen, Gang Zhao, Shaojie Chen
  • Opto-Electronic Science
  • 2024-02-29
  • Generation of lossy mode resonances (LMR) using perovskite nanofilms
  • Dayron Armas, Ignacio R. Matias, M. Carmen Lopez-Gonzalez, Carlos Ruiz Zamarreño, Pablo Zubiate, Ignacio del Villar, Beatriz Romero
  • Opto-Electronic Advances
  • 2024-02-26
  • Acousto-optic scanning multi-photon lithography with high printing rate
  • Minghui Hong
  • Opto-Electronic Advances
  • 2024-02-26
  • Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
  • Pengcheng Huo, Ruixuan Yu, Mingze Liu, Hui Zhang, Yan-qing Lu, Ting Xu
  • Opto-Electronic Advances
  • 2024-02-26
  • Miniature tunable Airy beam optical meta-device
  • Jing Cheng Zhang, Mu Ku Chen, Yubin Fan, Qinmiao Chen, Shufan Chen, Jin Yao, Xiaoyuan Liu, Shumin Xiao, Din Ping Tsai
  • Opto-Electronic Advances
  • 2024-02-26
  • Data-driven polarimetric imaging: a review
  • Kui Yang, Fei Liu, Shiyang Liang, Meng Xiang, Pingli Han, Jinpeng Liu, Xue Dong, Yi Wei, Bingjian Wang, Koichi Shimizu, Xiaopeng Shao
  • Opto-Electronic Science
  • 2024-02-24
  • Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
  • Zhao Zhang, Gaoyuan Li, Yonglei Liu, Haiyun Wang, Bernhard J. Hoenders, Chunhao Liang, Yangjian Cai, Jun Zeng
  • Opto-Electronic Science
  • 2024-01-31
  • Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
  • Xin Ge, Si Chen, Kan Lin, Guangming Ni, En Bo, Lulu Wang, Linbo Liu
  • Opto-Electronic Science
  • 2024-01-31
  • Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
  • Yuncheng Liu, Ke Xu, Xuhao Fan, Xinger Wang, Xuan Yu, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2024-01-25
  • Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
  • Keyao Li, Yiming Wang, Dapu Pi, Baoli Li, Haitao Luan, Xinyuan Fang, Peng Chen, Yanqing Lu, Min Gu
  • Opto-Electronic Advances
  • 2024-01-25
  • Physics-informed deep learning for fringe pattern analysis
  • Wei Yin, Yuxuan Che, Xinsheng Li, Mingyu Li, Yan Hu, Shijie Feng, Edmund Y. Lam, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2024-01-25



  • Development of a double-layer shaking table for large-displacement high-frequency excitation                                Deep-learning-based ciphertext-only attack on optical double random phase encryption
    About
    |
    Contact
    |
    Copyright © PubCard