Year
Month
(Peer-Reviewed) Direct field-to-pattern monolithic design of holographic metasurface via residual encoder-decoder convolutional neural network
Ruichao Zhu 朱瑞超 ¹, Jiafu Wang 王甲富 ¹, Tianshuo Qiu 邱天硕 ¹, Dingkang Yang 杨鼎康 ², Bo Feng 封波 ¹, Zuntian Chu 楚遵天 ¹, Tonghao Liu 刘同豪 ¹, Yajuan Han 韩亚娟 ¹, Hongya Chen 陈红雅 ¹, Shaobo Qu 屈绍波 ¹
¹ Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University, Xi'an 710051, China
中国 西安 中国人民解放军空军工程大学 陕西省人工结构功能材料与器件重点实验室
² The Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
中国 上海 复旦大学工程与应用技术研究院
Opto-Electronic Advances, 2023-08-31
Abstract

Complex-amplitude holographic metasurfaces (CAHMs) with the flexibility in modulating phase and amplitude profiles have been used to manipulate the propagation of wavefront with an unprecedented level, leading to higher image-reconstruction quality compared with their natural counterparts. However, prevailing design methods of CAHMs are based on Huygens-Fresnel theory, meta-atom optimization, numerical simulation and experimental verification, which results in a consumption of computing resources.

Here, we applied residual encoder-decoder convolutional neural network to directly map the electric field distributions and input images for monolithic metasurface design. A pretrained network is firstly trained by the electric field distributions calculated by diffraction theory, which is subsequently migrated as transfer learning framework to map the simulated electric field distributions and input images. The training results show that the normalized mean pixel error is about 3% on dataset.

As verification, the metasurface prototypes are fabricated, simulated and measured. The reconstructed electric field of reverse-engineered metasurface exhibits high similarity to the target electric field, which demonstrates the effectiveness of our design. Encouragingly, this work provides a monolithic field-to-pattern design method for CAHMs, which paves a new route for the direct reconstruction of metasurfaces.
Direct field-to-pattern monolithic design of holographic metasurface via residual encoder-decoder convolutional neural network_1
Direct field-to-pattern monolithic design of holographic metasurface via residual encoder-decoder convolutional neural network_2
Direct field-to-pattern monolithic design of holographic metasurface via residual encoder-decoder convolutional neural network_3
Direct field-to-pattern monolithic design of holographic metasurface via residual encoder-decoder convolutional neural network_4
  • Photo-driven fin field-effect transistors
  • Jintao Fu, Chongqian Leng, Rui Ma, Changbin Nie, Feiying Sun, Genglin Li, Xingzhan Wei
  • Opto-Electronic Science
  • 2024-05-28
  • Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces
  • Tong Nan, Huan Zhao, Jinying Guo, Xinke Wang, Hao Tian, Yan Zhang
  • Opto-Electronic Science
  • 2024-05-28
  • Resonantly enhanced second- and third-harmonic generation in dielectric nonlinear metasurfaces
  • Ji Tong Wang, Pavel Tonkaev, Kirill Koshelev, Fangxing Lai, Sergey Kruk, Qinghai Song, Yuri Kivshar, Nicolae C. Panoiu
  • Opto-Electronic Advances
  • 2024-05-15
  • Liquid crystal-integrated metasurfaces for an active photonic platform
  • Dohyun Kang, Hyeonsu Heo, Younghwan Yang, Junhwa Seong, Hongyoon Kim, Joohoon Kim, Junsuk Rho
  • Opto-Electronic Advances
  • 2024-04-25
  • Fast source mask co-optimization method for high-NA EUV lithography
  • Ziqi Li, Lisong Dong, Xu Ma, Yayi Wei
  • Opto-Electronic Advances
  • 2024-04-25
  • Polariton lasing in Mie-resonant perovskite nanocavity
  • Mikhail A. Masharin, Daria Khmelevskaia, Valeriy I. Kondratiev, Daria I. Markina, Anton D. Utyushev, Dmitriy M. Dolgintsev, Alexey D. Dmitriev, Vanik A. Shahnazaryan, Anatoly P. Pushkarev, Furkan Isik, Ivan V. Iorsh, Ivan A. Shelykh, Hilmi V. Demir, Anton K. Samusev, Sergey V. Makarov
  • Opto-Electronic Advances
  • 2024-04-25
  • High-Q resonant Terahertz metasurfaces
  • Manukumara Manjappa, Yuri Kivshar
  • Opto-Electronic Advances
  • 2024-04-25
  • Efficient stochastic parallel gradient descent training for on-chip optical processor
  • Yuanjian Wan, Xudong Liu, Guangze Wu, Min Yang, Guofeng Yan, Yu Zhang, Jian Wang
  • Opto-Electronic Advances
  • 2024-04-25
  • High-intensity spatial-mode steerable frequency up-converter toward on-chip integration
  • Haizhou Huang, Huaixi Chen, Huagang Liu, Zhi Zhang, Xinkai Feng, Jiaying Chen, Hongchun Wu, Jing Deng, Wanguo Liang, Wenxiong Lin
  • Opto-Electronic Science
  • 2024-04-24
  • Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors
  • Jiao Jiao Liu, Xinxin Yang, Qiulei Xu, Ruiguang Chang, Zhenghui Wu, Huaibin Shen
  • Opto-Electronic Science
  • 2024-04-24
  • Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
  • Ruozhong Han, Yuchan Zhang, Qilin Jiang, Long Chen, Kaiqiang Cao, Shian Zhang, Donghai Feng, Zhenrong Sun, Tianqing Jia
  • Opto-Electronic Science
  • 2024-03-22
  • Optical scanning endoscope via a single multimode optical fiber
  • Guangxing Wu, Runze Zhu, Yanqing Lu, Minghui Hong, Fei Xu
  • Opto-Electronic Science
  • 2024-03-22



  • Advancing nonlinear nanophotonics: harnessing membrane metasurfaces for third-harmonic generation and imaging                                A novel method for designing crosstalk-free achromatic full Stokes imaging polarimeter
    About
    |
    Contact
    |
    Copyright © PubCard