Year
Month
(Peer-Reviewed) Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers
Andergachew Mekonnen Berhe, Khalil As'ham, Ibrahim Al-Ani, Haroldo T. Hattori, Andrey E. Miroshnichenko
School of Engineering and Technology, University of New South Wales at Canberra, Northcott Drive, Canberra ACT 2610, Australia
Opto-Electronic Advances, 2024-01-24
Abstract

Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states. In plasmon-exciton strong coupling, plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.

Additionally, two-dimensional transition metal dichalcogenides (TMDCs) have a significant exciton binding energy and remain stable at ambient conditions, making them an excellent alternative for investigating light-matter interactions. As a result, strong plasmon-exciton coupling has been reported by introducing a single metallic cavity. However, single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.

Here, we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling. The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.

The calculated Rabi splitting of Au-MoSe2 and Au-WSe2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity, resulting in room-temperature Rabi splitting ranging between 77.86 and 320 meV. These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.
Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers_1
Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers_2
Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers_3
Strong coupling and catenary field enhancement in the hybrid plasmonic metamaterial cavity and TMDC monolayers_4
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25
  • Meta-lens digital image correlation
  • Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
  • Opto-Electronic Advances
  • 2025-07-29
  • Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection
  • Xinran Wei, Yuzhang Liang, Xuhui Zhang, Rui Li, Haonan Wei, Yijin He, Lanlan Shen, Yurui Fang, Ting Xu, Wei Peng
  • Opto-Electronic Science
  • 2025-07-25
  • Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
  • Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
  • Opto-Electronic Science
  • 2025-07-25
  • Non-volatile reconfigurable planar lightwave circuit splitter enabled by laser-directed Sb2S3 phase transitions
  • Shixin Gao, Tun Cao, Haonan Ren, Jingzhe Pang, Ran Chen, Yang Ren, Zhenqing Zhao, Xiaoming Chen, Dongming Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Progress in metalenses: from single to array
  • Chang Peng, Jin Yao, Din Ping Tsai
  • Opto-Electronic Technology
  • 2025-07-18
  • 30 years of nanoimprint: development, momentum and prospects
  • Wei-Kuan Lin, L. Jay Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Review for wireless communication technology based on digital encoding metasurfaces
  • Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
  • Opto-Electronic Advances
  • 2025-07-17
  • Coulomb attraction driven spontaneous molecule-hotspot paring enables universal, fast, and large-scale uniform single-molecule Raman spectroscopy
  • Lihong Hong, Haiyao Yang, Jianzhi Zhang, Zihan Gao, Zhi-Yuan Li
  • Opto-Electronic Advances
  • 2025-07-17



  • Broadband high-efficiency dielectric metalenses based on quasi-continuous nanostrips                                Fast source mask co-optimization method for high-NA EUV lithography
    About
    |
    Contact
    |
    Copyright © PubCard