Year
Month
(Peer-Reviewed) Fast step heterodyne light-induced thermoelastic spectroscopy gas sensing based on a quartz tuning fork with high-frequency of 100 kHz
Yuanzhi Wang 王元治 ¹ ², Ying He 何应 ¹, Shunda Qiao 乔顺达 ¹, Xiaonan Liu 刘晓楠 ¹ ², Chu Zhang 张楚 ¹ ², Xiaoming Duan 段小明 ¹, Yufei Ma 马欲飞 ¹ ²
¹ National Key Laboratory of Laser Spatial Information, Harbin Institute of Technology, Harbin 150000 China
中国 哈尔滨 哈尔滨工业大学激光空间信息全国重点实验室
² Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
中国 郑州 哈尔滨工业大学郑州研究院
Opto-Electronic Advances, 2025-08-28
Abstract

In this paper, a fast step heterodyne light-induced thermoelastic spectroscopy (SH-LITES) sensor using a high-frequency quartz tuning fork (QTF) with resonant frequency of ~100 kHz is reported for the first time. The theoretical principle of heterodyne LITES (H-LITES) signal generation is analyzed firstly, and an acetylene (C2H2) H-LITES sensor is established to verify its performance.

Experimental comparisons between the high-frequency QTF and a standard commercial QTF with resonant frequency of ~32.768 kHz reveal that the high-frequency QTF exhibits a tenfold faster response time. Specifically, the H-LITES sensor with this QTF achieves a 33 ms measurement cycle, 90% shorter than commercial counterparts. Furthermore, The SH-LITES technique is proposed to further shorten the scanning time to 15 ms, which achieves the shortest LITES measurement time known to date.

To demonstrate its advantages in dynamic gas detection, an H2O-LITES system integrating both QTF types is constructed for real-time monitoring of H2O concentration during different respiration patterns. Comparative measurements show that the SH-LITES more accurately captures dynamic H2O concentration fluctuations during respiration, outperforming the commercial QTF-based H-LITES sensor in rapid response scenarios.
Fast step heterodyne light-induced thermoelastic spectroscopy gas sensing based on a quartz tuning fork with high-frequency of 100 kHz_1
Fast step heterodyne light-induced thermoelastic spectroscopy gas sensing based on a quartz tuning fork with high-frequency of 100 kHz_2
Fast step heterodyne light-induced thermoelastic spectroscopy gas sensing based on a quartz tuning fork with high-frequency of 100 kHz_3
Fast step heterodyne light-induced thermoelastic spectroscopy gas sensing based on a quartz tuning fork with high-frequency of 100 kHz_4
  • In-situ and ex-situ twisted bilayer liquid crystal computing platform for reconfigurable image processing
  • Kang Zeng, Yougang Ke, Zhangming Hong, Linzhou Zeng, Xinxing Zhou
  • Opto-Electronic Advances
  • 2025-12-25
  • Highly textured single-crystal-like perovskite films for large-area, high-performance photodiodes
  • Runkai Liu, Feng Li, Rongkun Zheng
  • Opto-Electronic Advances
  • 2025-12-25
  • Robust performance of PTQ10:DTY6 in halogen-free photovoltaics across deposition techniques and configurations for industrial scale-up
  • Atiq Ur Rahman, Tanner M. Melody, Sydney Pfleiger, Acacia Patterson, Andrea Reale, Brian A. Collins
  • Opto-Electronic Advances
  • 2025-12-25
  • Surpassing the diffraction limit in long-range laser engineering via cross-scale vectorial optical field manipulation: perspectives and outlooks
  • Yinghui Guo, Mingbo Pu, Yang Li, Mingfeng Xu, Xiangang Luo
  • Opto-Electronic Advances
  • 2025-12-25
  • Spatiotemporal multiplexed photonic reservoir computing: parallel prediction for the high-dimensional dynamics of complex semiconductor laser network
  • Tong Yang, Li-Yue Zhang, Song-Sui Li, Wei Pan, Xi-Hua Zou, Lian-Shan Yan
  • Opto-Electronic Advances
  • 2025-12-25
  • Filament based ionizing radiation sensing
  • Pengfei Qi, Haiyi Liu, Jiewei Guo, Nan Zhang, Lu Sun, Shishi Tao, Binpeng Shang, Lie Lin Weiwei Liu
  • Opto-Electronic Advances
  • 2025-12-25
  • Separation and identification of mixed signal for distributed acoustic sensor using deep learning
  • Huaxin Gu, Jingming Zhang, Xingwei Chen, Feihong Yu, Deyu Xu, Shuaiqi Liu, Weihao Lin, Xiaobing Shi, Zixing Huang, Xiongji Yang, Qingchang Hu, Liyang Shao
  • Opto-Electronic Advances
  • 2025-11-25
  • Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
  • Yongwei Yao, Yaping Zhang, Huanrong He, Xianfeng David Gu, Daping Chu, Ting-Chung Poon
  • Opto-Electronic Advances
  • 2025-11-25
  • Partially coherent optical chip enables physical-layer public-key encryption
  • Bo Wu, Wenkai Zhang, Hailong Zhou, Jianji Dong, Yilun Wang, Xinliang Zhang
  • Opto-Electronic Advances
  • 2025-11-25
  • Advanced applications of pulsed laser deposition in electrocatalysts for hydrogen-electric conversion systems
  • Yuanyuan Zhou, Yong Wang, Ke Zhang, Huaqian Leng, Peter Müller-Buschbaum, Nian Li, Liang Qiao
  • Opto-Electronic Advances
  • 2025-11-25
  • A review on optical torques: from engineered light fields to objects
  • Tao He, Jingyao Zhang, Din Ping Tsai, Junxiao Zhou, Haiyang Huang, Weicheng Yi, Zeyong Wei Yan Zu, Qinghua Song, Zhanshan Wang, Cheng-Wei Qiu, Yuzhi Shi, Xinbin Cheng
  • Opto-Electronic Science
  • 2025-11-25
  • IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
  • Xuan Yu, Zhilin Teng, Xuhao Fan, Tianchi Liu, Wenbin Chen, Xinger Wang, Zhe Zhao, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2025-10-25



  • Halide perovskite volatile unipolar nanomemristor                                Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
    About
    |
    Contact
    |
    Copyright © PubCard