Year
Month
(Peer-Reviewed) Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators
Kuan Liu ¹, Zhenyuan Lin ³, Bing Han ¹, Minghui Hong ², Tun Cao ¹
¹ School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
中国 大连 大连理工大学光电工程与仪器科学学院
² Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
中国 厦门 厦门大学萨本栋微米纳米科学技术研究院
³ Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
中国 北京 北京理工大学激光工程学院 材料加工工程系
Opto-Electronic Advances, 2023-08-30
Abstract

High-resolution multi-color printing relies upon pixelated optical nanostructures, which is crucial to promote color display by producing nonbleaching colors, yet requires simplicity in fabrication and dynamic switching. Antimony trisulfide (Sb2S3) is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases, which holds the key to color-varying devices.

Herein, we proposed a dynamically switchable color printing method using Sb2S3-based stepwise pixelated Fabry-Pérot (FP) cavities with various cavity lengths. The device was fabricated by employing a direct laser patterning that is a less time-consuming, more approachable, and low-cost technique. As switching the state of Sb2S3 between amorphous and crystalline, the multi-color of stepwise pixelated FP cavities can be actively changed. The color variation is due to the profound change in the refractive index of Sb2S3 over the visible spectrum during its phase transition.

Moreover, we directly fabricated sub-50 nm nano-grating on ultrathin Sb2S3 laminate via microsphere 800-nm femtosecond laser irradiation in far field. The minimum feature size can be further decreased down to ~45 nm (λ/17) by varying the thickness of Sb2S3 film. Ultrafast switchable Sb2S3 photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption, camouflaging surfaces, anticounterfeiting, etc.

Importantly, our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.
Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators_1
Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators_2
Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators_3
Non-volatile dynamically switchable color display via chalcogenide stepwise cavity resonators_4
  • Photo-driven fin field-effect transistors
  • Jintao Fu, Chongqian Leng, Rui Ma, Changbin Nie, Feiying Sun, Genglin Li, Xingzhan Wei
  • Opto-Electronic Science
  • 2024-05-28
  • Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces
  • Tong Nan, Huan Zhao, Jinying Guo, Xinke Wang, Hao Tian, Yan Zhang
  • Opto-Electronic Science
  • 2024-05-28
  • Resonantly enhanced second- and third-harmonic generation in dielectric nonlinear metasurfaces
  • Ji Tong Wang, Pavel Tonkaev, Kirill Koshelev, Fangxing Lai, Sergey Kruk, Qinghai Song, Yuri Kivshar, Nicolae C. Panoiu
  • Opto-Electronic Advances
  • 2024-05-15
  • Liquid crystal-integrated metasurfaces for an active photonic platform
  • Dohyun Kang, Hyeonsu Heo, Younghwan Yang, Junhwa Seong, Hongyoon Kim, Joohoon Kim, Junsuk Rho
  • Opto-Electronic Advances
  • 2024-04-25
  • Fast source mask co-optimization method for high-NA EUV lithography
  • Ziqi Li, Lisong Dong, Xu Ma, Yayi Wei
  • Opto-Electronic Advances
  • 2024-04-25
  • Polariton lasing in Mie-resonant perovskite nanocavity
  • Mikhail A. Masharin, Daria Khmelevskaia, Valeriy I. Kondratiev, Daria I. Markina, Anton D. Utyushev, Dmitriy M. Dolgintsev, Alexey D. Dmitriev, Vanik A. Shahnazaryan, Anatoly P. Pushkarev, Furkan Isik, Ivan V. Iorsh, Ivan A. Shelykh, Hilmi V. Demir, Anton K. Samusev, Sergey V. Makarov
  • Opto-Electronic Advances
  • 2024-04-25
  • High-Q resonant Terahertz metasurfaces
  • Manukumara Manjappa, Yuri Kivshar
  • Opto-Electronic Advances
  • 2024-04-25
  • Efficient stochastic parallel gradient descent training for on-chip optical processor
  • Yuanjian Wan, Xudong Liu, Guangze Wu, Min Yang, Guofeng Yan, Yu Zhang, Jian Wang
  • Opto-Electronic Advances
  • 2024-04-25
  • High-intensity spatial-mode steerable frequency up-converter toward on-chip integration
  • Haizhou Huang, Huaixi Chen, Huagang Liu, Zhi Zhang, Xinkai Feng, Jiaying Chen, Hongchun Wu, Jing Deng, Wanguo Liang, Wenxiong Lin
  • Opto-Electronic Science
  • 2024-04-24
  • Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors
  • Jiao Jiao Liu, Xinxin Yang, Qiulei Xu, Ruiguang Chang, Zhenghui Wu, Huaibin Shen
  • Opto-Electronic Science
  • 2024-04-24
  • Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
  • Ruozhong Han, Yuchan Zhang, Qilin Jiang, Long Chen, Kaiqiang Cao, Shian Zhang, Donghai Feng, Zhenrong Sun, Tianqing Jia
  • Opto-Electronic Science
  • 2024-03-22
  • Optical scanning endoscope via a single multimode optical fiber
  • Guangxing Wu, Runze Zhu, Yanqing Lu, Minghui Hong, Fei Xu
  • Opto-Electronic Science
  • 2024-03-22



  • Physics-data-driven intelligent optimization for large-aperture metalenses                                Pluggable multitask diffractive neural networks based on cascaded metasurfaces
    About
    |
    Contact
    |
    Copyright © PubCard