(Peer-Reviewed) Pluggable multitask diffractive neural networks based on cascaded metasurfaces
Cong He 合聪 ¹, Dan Zhao 赵旦 ², Fei Fan 范飞 ², Hongqiang Zhou 周宏强 ¹ ³, Xin Li 李昕 ¹, Yao Li 李瑶 ⁴, Junjie Li 李俊杰 ⁴, Fei Dong 董斐 ⁵, Yin-Xiao Miao 缪寅宵 ⁵, Yongtian Wang 王涌天 ¹, Lingling Huang 黄玲玲 ¹
¹ Beijing Engineering Research Center of Mixed Reality and Advanced Display, Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education of China, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
中国 北京 北京理工大学光电学院 光电成像技术与系统教育部重点实验室 混合现实与新型显示工程技术研究中心
² Institute of Modern Optics, Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin 300350, China
中国 天津 南开大学 天津市光电传感器与传感网络重点实验室 现代光学研究所
³ Department of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
中国 北京 北京理工大学物理学院 光学物理系
⁴ Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100191, China
中国 北京 中国科学院物理研究所 北京凝聚态物理国家实验室
⁵ Beijing Aerospace Institute for Metrology and Measurement Technology, Beijing 100076, China
中国 北京 北京航天计量测试技术研究所
Opto-Electronic Advances, 2023-07-26
Abstract
Optical neural networks have significant advantages in terms of power consumption, parallelism, and high computing speed, which has intrigued extensive attention in both academic and engineering communities. It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition. However, the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.
To push the development of this issue, we propose the pluggable diffractive neural networks (P-DNN), a general paradigm resorting to the cascaded metasurfaces, which can be applied to recognize various tasks by switching internal plug-ins. As the proof-of-principle, the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.
Encouragingly, the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed, low-power and versatile artificial intelligence systems.
CW laser damage of ceramics induced by air filament
Chuan Guo, Kai Li, Zelin Liu, Yuyang Chen, Junyang Xu, Zhou Li, Wenda Cui, Changqing Song, Cong Wang, Xianshi Jia, Ji'an Duan, Kai Han
Opto-Electronic Advances
2025-06-27
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
Chen Geng, Wang Anqi, Zhang Yi, Zhang Fujun, Xu Dongchen, Liu Yueqi, Zhang Zhi, Yan Zhijun, Li Zhen, Li Hao, Sun Qizhen
Opto-Electronic Science
2025-06-25
Observation of polaronic state assisted sub-bandgap saturable absorption
Li Zhou, Yiduo Wang, Jianlong Kang, Xin Li, Quan Long, Xianming Zhong, Zhihui Chen, Chuanjia Tong, Keqiang Chen, Zi-Lan Deng, Zhengwei Zhang, Chuan-Cun Shu, Yongbo Yuan, Xiang Ni, Si Xiao, Xiangping Li, Yingwei Wang, Jun He
Opto-Electronic Advances
2025-06-19
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
Opto-Electronic Advances
2025-05-27
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
Opto-Electronic Advances
2025-05-27
Integrated photonic polarizers with 2D reduced graphene oxide
Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
Opto-Electronic Science
2025-05-22