Year
Month
(Peer-Reviewed) Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
Shujun Zheng 郑淑君 ¹, Jiaren Tan ², Hongjie Liu 刘宏杰 ¹, Xiao Lin 林枭 ³, Yusuke Saita 最田裕介 ⁴, Takanori Nomura 野村孝徳 ⁴, Xiaodi Tan 谭小地 ³
¹ Information Photonics Research Center, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China
中国 福州 福建师范大学光电与信息工程学院 信息光子学研究中心
² Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA
³ College of Photonic and Electronic Engineering, Key Laboratory of Opto-Electronic Science and for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Provincial Engineering Technology Research Center of Photoelectric Sensing Application, Fujian Normal University, Fuzhou 350117, China
中国 福州 福建师范大学光电与信息工程学院 医学光电科学与技术教育部重点实验室 福建省光子技术重点实验室 福建省光电传感应用工程技术研究中心
⁴ Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama, 640-8510, Japan
Opto-Electronic Advances, 2024-10-23
Abstract

Orthogonal matrices have become a vital means for coding and signal processing owing to their unique distributional properties. Although orthogonal matrices based on amplitude or phase combinations have been extensively explored, the orthogonal matrix of polarization combinations (OMPC) is a novel, relatively unexplored concept.

Herein, we propose a method for constructing OMPCs of any dimension encompassing 4n (where n is 1, 2, 4, 8, …) mutually orthogonal 2n-component polarization combinations. In the field of holography, the integration of polarization multiplexing techniques with polarization-sensitive materials is expected to emerge as a groundbreaking approach for multichannel hologram multiplexing, offering considerable enhancements in data storage capacity and security.

A multidimensional OMPC enables the realization of multichannel multiplexing and dynamical modulation of information in polarization holographic recording. Despite consolidating all information into a single position within the material, we effectively avoided extraneous crosstalk during the reconstruction process.

Our results show that achieving four distinct holographic images individually and simultaneously depends on the polarization combination represented by the incident wave. This discovery opens up a new avenue for achieving highly holographic information storage and dynamically displayed information, harnessing the potential of OMPC to expand the heretofore limited dimensionality of orthogonal polarization.
Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording_1
Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording_2
Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording_3
Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording_4
  • Miniature meta-device for dynamic control of Airy beam
  • Qichang Ma, Guixin Li
  • Opto-Electronic Advances
  • 2024-08-28
  • Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-image-free phase retrieval from single-shot hologram
  • Xuan Tian, Runze Li, Tong Peng, Yuge Xue, Junwei Min, Xing Li, Chen Bai, Baoli Yao
  • Opto-Electronic Advances
  • 2024-08-28
  • Smart photonic wristband for pulse wave monitoring
  • Renfei Kuang, Zhuo Wang, Lin Ma, Heng Wang, Qingming Chen, Arnaldo Leal Junior, Santosh Kumar, Xiaoli Li, Carlos Marques, Rui Min
  • Opto-Electronic Science
  • 2024-08-20
  • Multifunctional mixed analog/digital signal processor based on integrated photonics
  • Yichen Wu, Qipeng Yang, Bitao Shen, Yuansheng Tao, Xuguang Zhang, Zihan Tao, Luwen Xing, Zhangfeng Ge, Tiantian Li, Bowen Bai, Haowen Shu, Xingjun Wang
  • Opto-Electronic Science
  • 2024-08-16
  • Three-dimensional multichannel waveguide grating filters
  • Si-Yu Yin, Qi Guo, Shan-Ren Liu, Ju-Wei He, Yong-Sen Yu, Zhen-Nan Tian, Qi-Dai Chen
  • Opto-Electronic Science
  • 2024-08-14
  • Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
  • Shibin Jiang, Wenjun Deng, Zhanshan Wang, Xinbin Cheng, Din Ping Tsai, Yuzhi Shi, Weiming Zhu
  • Opto-Electronic Science
  • 2024-07-26
  • Complete-basis-reprogrammable coding metasurface for generating dynamically-controlled holograms under arbitrary polarization states
  • Zuntian Chu, Xinqi Cai, Ruichao Zhu, Tonghao Liu, Huiting Sun, Tiefu Li, Yuxiang Jia, Yajuan Han, Shaobo Qu, Jiafu Wang
  • Opto-Electronic Advances
  • 2024-07-26
  • Optical micro/nanofiber enabled tactile sensors and soft actuators: A review
  • Lei Zhang, Yuqi Zhen, Limin Tong
  • Opto-Electronic Science
  • 2024-07-26
  • Soliton microcomb generation by cavity polygon modes
  • Botao Fu, Renhong Gao, Ni Yao, Haisu Zhang, Chuntao Li, Jintian Lin, Min Wang, Lingling Qiao, Ya Cheng
  • Opto-Electronic Advances
  • 2024-07-25
  • Focus control of wide-angle metalens based on digitally encoded metasurface
  • Yi Chen, Simeng Zhang, Ying Tian, Chenxia Li, Wenlong Huang, Yixin Liu, Yongxing Jin, Bo Fang, Zhi Hong, Xufeng Jing
  • Opto-Electronic Advances
  • 2024-07-23
  • Spin-controlled generation of a complete polarization set with randomly-interleaved plasmonic metasurfaces
  • Sören im Sande, Yadong Deng, Sergey I. Bozhevolnyi, Fei Ding
  • Opto-Electronic Advances
  • 2024-07-23



  • Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning                                Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
    About
    |
    Contact
    |
    Copyright © PubCard