Year
Month
(Peer-Reviewed) Inter-annual variations of 6.5-day planetary waves and their relations with QBO
Ying-Ying Huang 黄莹莹 ¹ ² ³, Jun Cui 崔峻 ⁴ ⁵, Hui-Jun Li 李汇军 ⁶, Chongyin Li 李崇银 ⁷
¹ National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
中国 北京 中国科学院国家天文台
² State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing, China
中国 北京 中国科学院空间天气学国家重点实验室
³ CAS Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
中国 北京 中国科学院国家天文台 中国科学院月球与深空探测重点实验室
⁴ Planetary Environmental and Astrobiological Research Laboratory (PEARL), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong, China
中国 广东 珠海 中山大学大气科学学院 行星环境与宜居性研究实验室
⁵ School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, Guangdong, China
中国 广东 珠海 中山大学大气科学学院
⁶ College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
中国 南京 南京航空航天大学航天学院
⁷ LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
中国 北京 中国科学院大气物理研究所 大气科学和地球流体力学数值模拟国家重点实验室
Abstract

This paper studies inter-annual variations of 6.5-Day Waves (6.5DWs) in 20-110 km between 52°S-52°N during March 2002-January 2021 and their relations with equatorial stratospheric Quasi-Biennial Oscillation (QBO). 6.5DWs' amplitudes in temperature are calculated based on SABER/TIMED observations. QBO zonal winds are obtained from ERA5 reanalysis dataset. QBO phases are derived from Empirical Orthogonal Functions (EOF) method. Wavelet analysis of 6.5DW variations demonstrates obvious spectral maximums around 28-38 months in 32°-52°N and 26-30 months in 32°-52°S.

In the Northern Hemisphere, peak periods get longer poleward, while they remain unchanged with latitude in the Southern Hemisphere. Residual 6.5DWs' amplitudes are calculated by removing composite amplitudes from 6.5DWs' amplitudes. Comparisons between QBO and the monthly maximum residual 6.5DWs' amplitudes (A_Mmax) show clear relations between QBO and 6.5DWs in both hemispheres, especially in the NH. When A_Mmax is large in the NH, mean QBO profile is easterly at all levels from 70 to 5 hPa. When it's weak, mean QBO wind is weak westerly below 30 hPa. Linear Pearson correlation coefficients between QBO phases and A_Mmax show large positive values in 60-110 km between 20°-52°N in April and around 64 km at 24°S in February, and large negative values from 80 to 110 km between 20°N-50°N in August and at 96-106 km between 20°S-44°S in February.

These results indicate quantitative relations between QBO and 6.5DWs and provide credible evidences for further studies of QBO modulations on long-term variations of 6.5DWs.
Inter-annual variations of 6.5-day planetary waves and their relations with QBO_1
Inter-annual variations of 6.5-day planetary waves and their relations with QBO_2
Inter-annual variations of 6.5-day planetary waves and their relations with QBO_3
Inter-annual variations of 6.5-day planetary waves and their relations with QBO_4
  • Filament based ionizing radiation sensing
  • Pengfei Qi, Haiyi Liu, Jiewei Guo, Nan Zhang, Lu Sun, Shishi Tao, Binpeng Shang, Lie Lin Weiwei Liu
  • Opto-Electronic Advances
  • 2025-12-25
  • Separation and identification of mixed signal for distributed acoustic sensor using deep learning
  • Huaxin Gu, Jingming Zhang, Xingwei Chen, Feihong Yu, Deyu Xu, Shuaiqi Liu, Weihao Lin, Xiaobing Shi, Zixing Huang, Xiongji Yang, Qingchang Hu, Liyang Shao
  • Opto-Electronic Advances
  • 2025-11-25
  • Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
  • Yongwei Yao, Yaping Zhang, Huanrong He, Xianfeng David Gu, Daping Chu, Ting-Chung Poon
  • Opto-Electronic Advances
  • 2025-11-25
  • Partially coherent optical chip enables physical-layer public-key encryption
  • Bo Wu, Wenkai Zhang, Hailong Zhou, Jianji Dong, Yilun Wang, Xinliang Zhang
  • Opto-Electronic Advances
  • 2025-11-25
  • Advanced applications of pulsed laser deposition in electrocatalysts for hydrogen-electric conversion systems
  • Yuanyuan Zhou, Yong Wang, Ke Zhang, Huaqian Leng, Peter Müller-Buschbaum, Nian Li, Liang Qiao
  • Opto-Electronic Advances
  • 2025-11-25
  • A review on optical torques: from engineered light fields to objects
  • Tao He, Jingyao Zhang, Din Ping Tsai, Junxiao Zhou, Haiyang Huang, Weicheng Yi, Zeyong Wei Yan Zu, Qinghua Song, Zhanshan Wang, Cheng-Wei Qiu, Yuzhi Shi, Xinbin Cheng
  • Opto-Electronic Science
  • 2025-11-25
  • IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
  • Xuan Yu, Zhilin Teng, Xuhao Fan, Tianchi Liu, Wenbin Chen, Xinger Wang, Zhe Zhao, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2025-10-25
  • Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
  • Meng Wang, Dehai Liang1, Saif M. H. Qaid, Shuangyi Zhao, Yingjie Liu, Zhigang Zang
  • Opto-Electronic Advances
  • 2025-10-25
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
  • Fujie Li, Haoyu Zhang, Zhilan Lu, Li Yao, Yuan Wei, Ziwei Li, Feng Bao, Junwen Zhang, Yingjun Zhou, Nan Chi
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16



  • Three-dimensional fine crustal P-wave velocity structure in the Yangbi and Eryuan earthquake regions, Yunnan, China                                Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations
    About
    |
    Contact
    |
    Copyright © PubCard