(Peer-Reviewed) Multiphoton intravital microscopy in small animals of long-term mitochondrial dynamics based on super‐resolution radial fluctuations
Saeed Bohlooli Darian ¹, Jeongmin Oh ², Bjorn Paulson ², Minju Cho ¹, Globinna Kim ¹, Eunyoung Tak ¹ ², Inki Kim ³, Chan-Gi Pack ¹ ² Jung-Man Namgoong ⁴, In-Jeoung Baek ¹ ², Jun Ki Kim ¹ ²
¹ Department of Biomedical Engineering, Brain Korea 21 Project, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
² Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
³ Department of Pharmacology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
⁴ Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
Opto-Electronic Advances, 2025-07-17
Abstract
We developed an imaging technique combining two-photon computed super-resolution microscopy and suction-based stabilization to achieve the resolution of the single-cell level and organelles in vivo. To accomplish this, a conventional two-photon microscope was equipped with a 3D-printed holders, which stabilize the tissue surface within the focal plane of immersion objectives.
Further computational image stabilization and noise reduction were applied, followed by super-resolution radial fluctuations (SRRF) analysis, doubling image resolution, and enhancing signal-to-noise ratios for in vivo subcellular process investigation. Stabilization of < 1 µm was obtained by suction, and < 25 nm were achieved by subsequent algorithmic image stabilization. A Mito-Dendra2 mouse model, expressing green fluorescent protein (GFP) in mitochondria, demonstrated the potential of long-term intravital subcellular imaging.
In vivo mitochondrial fission and fusion, mitochondrial status migration, and the effects of alcohol consumption (modeled as an alcoholic liver disease) and berberine treatment on hepatocyte mitochondrial dynamics are directly observed intravitally. Suction-based stabilization in two-photon intravital imaging, coupled with computational super-resolution holds promise for advancing in vivo subcellular imaging studies.
CW laser damage of ceramics induced by air filament
Chuan Guo, Kai Li, Zelin Liu, Yuyang Chen, Junyang Xu, Zhou Li, Wenda Cui, Changqing Song, Cong Wang, Xianshi Jia, Ji'an Duan, Kai Han
Opto-Electronic Advances
2025-06-27
Operando monitoring of state of health for lithium battery via fiber optic ultrasound imaging system
Chen Geng, Wang Anqi, Zhang Yi, Zhang Fujun, Xu Dongchen, Liu Yueqi, Zhang Zhi, Yan Zhijun, Li Zhen, Li Hao, Sun Qizhen
Opto-Electronic Science
2025-06-25
Observation of polaronic state assisted sub-bandgap saturable absorption
Li Zhou, Yiduo Wang, Jianlong Kang, Xin Li, Quan Long, Xianming Zhong, Zhihui Chen, Chuanjia Tong, Keqiang Chen, Zi-Lan Deng, Zhengwei Zhang, Chuan-Cun Shu, Yongbo Yuan, Xiang Ni, Si Xiao, Xiangping Li, Yingwei Wang, Jun He
Opto-Electronic Advances
2025-06-19
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
Opto-Electronic Advances
2025-05-27
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
Opto-Electronic Advances
2025-05-27
Integrated photonic polarizers with 2D reduced graphene oxide
Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
Opto-Electronic Science
2025-05-22