(Peer-Reviewed) Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem
Xiaoli Jing 景晓丽 ¹ ², Qiming Liao 廖启明 ¹, Misheng Liang 梁密生 ², Bo Wang 王博 ³, Junjie Li 李俊杰 ³, Yongtian Wang 王涌天 ¹, Rui You 尤睿 ², Lingling Huang 黄玲玲 ¹
¹ Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
中国 北京 北京理工大学光电学院 北京市混合现实与新型显示工程技术研究中心
² Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, Beijing 100191, China
中国 北京 北京信息科技大学智能微系统实验室
³ Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100191, China
中国 北京 中国科学院物理研究所 北京凝聚态物理国家实验室
Opto-Electronic Advances, 2025-06-19
Abstract
Optical three-dimensional (3D) measurement is a critical tool in micro-nano manufacturing, the automotive industry, and medical technology due to its nondestructive nature, high precision, and sensitivity. However, passive light field system still requires a refractive primary lens to collect light of the scene, and structured light can not work well with the highly refractive object.
Meta-optics, known for being lightweight, compact, and easily integrable, has enabled advancements in passive metalens-array light fields and active structured light techniques. Here, we propose and experimentally validate a novel 3D measurement metasystem. It features a transmitting metasurface generating chromatic line focuses as depth markers and a symmetrically arranged receiving metasurface collecting depth-dependent spectral responses.
A lightweight, physically interpretable algorithm processes these data to yield high-precision depth information efficiently. Experiments on metallic and wafer materials demonstrate a depth accuracy of ±20 µm and lateral accuracy of ±10 µm. This single-layer optical metasystem, characterized by simplicity, micro-level accuracy, easy installation and scalability, shows potential for diverse applications, including process control, surface morphology analysis, and production measurement.
Meta-lens digital image correlation
Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
Opto-Electronic Advances
2025-07-29
Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
Opto-Electronic Science
2025-07-25
Review for wireless communication technology based on digital encoding metasurfaces
Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
Opto-Electronic Advances
2025-07-17