Year
Month
(Peer-Reviewed) Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem
Xiaoli Jing 景晓丽 ¹ ², Qiming Liao 廖启明 ¹, Misheng Liang 梁密生 ², Bo Wang 王博 ³, Junjie Li 李俊杰 ³, Yongtian Wang 王涌天 ¹, Rui You 尤睿 ², Lingling Huang 黄玲玲 ¹
¹ Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
中国 北京 北京理工大学光电学院 北京市混合现实与新型显示工程技术研究中心
² Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, Beijing 100191, China
中国 北京 北京信息科技大学智能微系统实验室
³ Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100191, China
中国 北京 中国科学院物理研究所 北京凝聚态物理国家实验室
Opto-Electronic Advances, 2025-06-19
Abstract

Optical three-dimensional (3D) measurement is a critical tool in micro-nano manufacturing, the automotive industry, and medical technology due to its nondestructive nature, high precision, and sensitivity. However, passive light field system still requires a refractive primary lens to collect light of the scene, and structured light can not work well with the highly refractive object.

Meta-optics, known for being lightweight, compact, and easily integrable, has enabled advancements in passive metalens-array light fields and active structured light techniques. Here, we propose and experimentally validate a novel 3D measurement metasystem. It features a transmitting metasurface generating chromatic line focuses as depth markers and a symmetrically arranged receiving metasurface collecting depth-dependent spectral responses.

A lightweight, physically interpretable algorithm processes these data to yield high-precision depth information efficiently. Experiments on metallic and wafer materials demonstrate a depth accuracy of ±20 µm and lateral accuracy of ±10 µm. This single-layer optical metasystem, characterized by simplicity, micro-level accuracy, easy installation and scalability, shows potential for diverse applications, including process control, surface morphology analysis, and production measurement.
Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem_1
Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem_2
Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem_3
Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem_4
  • Filament based ionizing radiation sensing
  • Pengfei Qi, Haiyi Liu, Jiewei Guo, Nan Zhang, Lu Sun, Shishi Tao, Binpeng Shang, Lie Lin Weiwei Liu
  • Opto-Electronic Advances
  • 2025-12-25
  • Separation and identification of mixed signal for distributed acoustic sensor using deep learning
  • Huaxin Gu, Jingming Zhang, Xingwei Chen, Feihong Yu, Deyu Xu, Shuaiqi Liu, Weihao Lin, Xiaobing Shi, Zixing Huang, Xiongji Yang, Qingchang Hu, Liyang Shao
  • Opto-Electronic Advances
  • 2025-11-25
  • Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
  • Yongwei Yao, Yaping Zhang, Huanrong He, Xianfeng David Gu, Daping Chu, Ting-Chung Poon
  • Opto-Electronic Advances
  • 2025-11-25
  • Partially coherent optical chip enables physical-layer public-key encryption
  • Bo Wu, Wenkai Zhang, Hailong Zhou, Jianji Dong, Yilun Wang, Xinliang Zhang
  • Opto-Electronic Advances
  • 2025-11-25
  • Advanced applications of pulsed laser deposition in electrocatalysts for hydrogen-electric conversion systems
  • Yuanyuan Zhou, Yong Wang, Ke Zhang, Huaqian Leng, Peter Müller-Buschbaum, Nian Li, Liang Qiao
  • Opto-Electronic Advances
  • 2025-11-25
  • A review on optical torques: from engineered light fields to objects
  • Tao He, Jingyao Zhang, Din Ping Tsai, Junxiao Zhou, Haiyang Huang, Weicheng Yi, Zeyong Wei Yan Zu, Qinghua Song, Zhanshan Wang, Cheng-Wei Qiu, Yuzhi Shi, Xinbin Cheng
  • Opto-Electronic Science
  • 2025-11-25
  • IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
  • Xuan Yu, Zhilin Teng, Xuhao Fan, Tianchi Liu, Wenbin Chen, Xinger Wang, Zhe Zhao, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2025-10-25
  • Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
  • Meng Wang, Dehai Liang1, Saif M. H. Qaid, Shuangyi Zhao, Yingjie Liu, Zhigang Zang
  • Opto-Electronic Advances
  • 2025-10-25
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
  • Fujie Li, Haoyu Zhang, Zhilan Lu, Li Yao, Yuan Wei, Ziwei Li, Feng Bao, Junwen Zhang, Yingjun Zhou, Nan Chi
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16



  • Observation of polaronic state assisted sub-bandgap saturable absorption                                Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization
    About
    |
    Contact
    |
    Copyright © PubCard