Year
Month
(Peer-Reviewed) Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem
Xiaoli Jing 景晓丽 ¹ ², Qiming Liao 廖启明 ¹, Misheng Liang 梁密生 ², Bo Wang 王博 ³, Junjie Li 李俊杰 ³, Yongtian Wang 王涌天 ¹, Rui You 尤睿 ², Lingling Huang 黄玲玲 ¹
¹ Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
中国 北京 北京理工大学光电学院 北京市混合现实与新型显示工程技术研究中心
² Laboratory of Intelligent Microsystems, Beijing Information Science and Technology University, Beijing 100191, China
中国 北京 北京信息科技大学智能微系统实验室
³ Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100191, China
中国 北京 中国科学院物理研究所 北京凝聚态物理国家实验室
Opto-Electronic Advances, 2025-06-19
Abstract

Optical three-dimensional (3D) measurement is a critical tool in micro-nano manufacturing, the automotive industry, and medical technology due to its nondestructive nature, high precision, and sensitivity. However, passive light field system still requires a refractive primary lens to collect light of the scene, and structured light can not work well with the highly refractive object.

Meta-optics, known for being lightweight, compact, and easily integrable, has enabled advancements in passive metalens-array light fields and active structured light techniques. Here, we propose and experimentally validate a novel 3D measurement metasystem. It features a transmitting metasurface generating chromatic line focuses as depth markers and a symmetrically arranged receiving metasurface collecting depth-dependent spectral responses.

A lightweight, physically interpretable algorithm processes these data to yield high-precision depth information efficiently. Experiments on metallic and wafer materials demonstrate a depth accuracy of ±20 µm and lateral accuracy of ±10 µm. This single-layer optical metasystem, characterized by simplicity, micro-level accuracy, easy installation and scalability, shows potential for diverse applications, including process control, surface morphology analysis, and production measurement.
Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem_1
Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem_2
Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem_3
Three-dimensional measurement enabled by single-layer all-in-one transmitting-receipting optical metasystem_4
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25
  • Meta-lens digital image correlation
  • Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
  • Opto-Electronic Advances
  • 2025-07-29
  • Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection
  • Xinran Wei, Yuzhang Liang, Xuhui Zhang, Rui Li, Haonan Wei, Yijin He, Lanlan Shen, Yurui Fang, Ting Xu, Wei Peng
  • Opto-Electronic Science
  • 2025-07-25
  • Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
  • Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
  • Opto-Electronic Science
  • 2025-07-25
  • Non-volatile reconfigurable planar lightwave circuit splitter enabled by laser-directed Sb2S3 phase transitions
  • Shixin Gao, Tun Cao, Haonan Ren, Jingzhe Pang, Ran Chen, Yang Ren, Zhenqing Zhao, Xiaoming Chen, Dongming Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Progress in metalenses: from single to array
  • Chang Peng, Jin Yao, Din Ping Tsai
  • Opto-Electronic Technology
  • 2025-07-18
  • 30 years of nanoimprint: development, momentum and prospects
  • Wei-Kuan Lin, L. Jay Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Review for wireless communication technology based on digital encoding metasurfaces
  • Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
  • Opto-Electronic Advances
  • 2025-07-17
  • Coulomb attraction driven spontaneous molecule-hotspot paring enables universal, fast, and large-scale uniform single-molecule Raman spectroscopy
  • Lihong Hong, Haiyao Yang, Jianzhi Zhang, Zihan Gao, Zhi-Yuan Li
  • Opto-Electronic Advances
  • 2025-07-17



  • Observation of polaronic state assisted sub-bandgap saturable absorption                                Fast-zoom and high-resolution sparse compound-eye camera based on dual-end collaborative optimization
    About
    |
    Contact
    |
    Copyright © PubCard