Year
Month
(Peer-Reviewed) Relationship between adjustment of low water level and utilization of water depth in Shashi Reach in middle Yangtze River
Juan-juan Fang 方娟娟 ¹, Yun-ping Yang 杨云平 ² ³, Meng-lin Jia 贾梦琳 ³, Yu-de Zhu 朱玉德 ², Jian-jun Wang 王建军 ²
¹ State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
中国 武汉 武汉大学 水资源与水电工程科学国家重点实验室
² Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin 300456, China
中国 天津 交通运输部 天津水运工程科学研究院
³ State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
中国 南京 河海大学水文水资源与水利工程科学国家重点实验室
Abstract

Hydrological, sediment, and bathymetric data of the Shashi Reach in the middle Yangtze River for the period of 1975e2018 were collected, and the characteristics of low water level changes and their impacts on utilization of water depth for navigation were investigated. The results showed that, during the study period, the Shashi Reach riverbed was significantly scoured and incised, with cross-sectional profiles showing overall narrowing and deepening. This indicated a strong potential to improve the water depth of the channel.

The analysis of the temporal variation of in-channel topographical features showed that the Taipingkou diara underwent siltation and erosion, with its head gradually scoured and relocated downstream after 2008, and the Sanbatan diara continued to shrink and migrate leftwards. Low water levels with the same flow rate over the study period decreased. For instance, from 2003 to 2020, the water level at the Shashi hydrological station decreased to 1.37 m with a flow rate of 6 000 m3/s.

Furthermore, the designed minimum navigable water level of the Shashi Reach was approximately 2.11 m lower than the recommended level. In terms of utilization of the channel water depth, continuous scouring of the river channel is expected to result in a reduction in discharge at the Taipingkou mouth, which will improve the water depth conditions of the channel during the dry season in the Shashi Reach.

With several channel regulation projects, the 3.5-m depth of the Shashi Reach would basically be unobstructed. This promotes utilization of the shipping route from the Taipingkou south branch to the Sanbatan north branch as the main navigation channel during the dry season. Considering the factors of current water depth and the clear width limitation of the navigation hole at the Jingzhou Yangtze River Bridge, this route can still be favored as the main navigation channel with a 4.5-m depth during the dry season.
Relationship between adjustment of low water level and utilization of water depth in Shashi Reach in middle Yangtze River_1
Relationship between adjustment of low water level and utilization of water depth in Shashi Reach in middle Yangtze River_2
Relationship between adjustment of low water level and utilization of water depth in Shashi Reach in middle Yangtze River_3
Relationship between adjustment of low water level and utilization of water depth in Shashi Reach in middle Yangtze River_4
  • Natural history and cycle threshold values analysis of COVID-19 in Xiamen City, China
  • Bin Deng, Weikang Liu, Zhinan Guo, Li Luo, Tianlong Yang, Jiefeng Huang, Buasiyamu Abudunaibi, Yidun Zhang, Xue Ouyang, Demeng Wang, Chenghao Su, Tianmu Chen
  • Infectious Disease Modelling
  • 2022-08-09
  • Terahertz generation from laser-induced plasma
  • Wenfeng Sun, Xinke Wang, Yan Zhang
  • Opto-Electronic Science
  • 2022-08-04
  • Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives
  • Ahmed Elbanna, Ksenia Chaykun, Yulia Lekina, Yuanda Liu, Benny Febriansyah, Shuzhou Li, Jisheng Pan, Ze Xiang Shen, Jinghua Teng
  • Opto-Electronic Science
  • 2022-08-04
  • Microchip imaging cytometer: making healthcare available, accessible, and affordable
  • Xilong Yuan, Todd Darcie, Ziyin Wei, J Stewart Aitchison
  • Opto-Electronic Advances
  • 2022-08-03
  • Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth
  • Siqi Yan, Yan Zuo, Sanshui Xiao, Leif Katsuo Oxenløwe, Yunhong Ding
  • Opto-Electronic Advances
  • 2022-07-29
  • Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems
  • Ja Hoon Koo, Huiwon Yun, Woongchan Lee, Sung-Hyuk Sunwoo, Hyung Joon Shim, Dae-Hyeong Kim
  • Opto-Electronic Advances
  • 2022-07-28
  • A review and a statistical analysis of porosity in metals additively manufactured by laser powder bed fusion
  • Dawei Wang, Huili Han, Bo Sa, Kelin Li, Jujie Yan, Jiazhen Zhang, Jianguang Liu, Zhengdi He, Ning Wang, Ming Yan
  • Opto-Electronic Advances
  • 2022-07-27
  • The real-time dynamic holographic display of LN:Bi,Mg crystals and defect-related electron mobility
  • Shuolin Wang, Yidong Shan, Dahuai Zheng, Shiguo Liu, Fang Bo, Hongde Liu, Yongfa Kong, Jingjun Xu
  • Opto-Electronic Advances
  • 2022-07-27
  • 0.35% THz pulse conversion efficiency achieved by Ti:sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate
  • Zhiqiang Yu, Nan Zhang, Jianxin Wang, Zijie Dai, Cheng Gong, Lie Lin, Lanjun Guo, Weiwei Liu
  • Opto-Electronic Advances
  • 2022-07-27
  • Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes
  • Bingying Zhou, Xun Shi, Xiaoli Tang, Quanyi Zhao, Le Wang, Fang Yao, Yongfeng Hou, Xianqiang Wang, Wei Feng, Liqing Wang, Xiaogang Sun, Li Wang, Shengshou Hu
  • Signal Transduction and Targeted Therapy
  • 2022-07-27
  • Ultrahigh-resolution on-chip spectrometer with silicon photonic resonators
  • Long Zhang, Ming Zhang, Tangnan Chen, Dajian Liu, Shihan Hong, Daoxin Dai
  • Opto-Electronic Advances
  • 2022-07-25
  • Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers
  • Wen Yu, Ni Yao, Jing Pan, Wei Fang, Xiong Li, Limin Tong, Lei Zhang
  • Opto-Electronic Advances
  • 2022-07-15



  • Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems                                Polarization-switchable plasmonic emitters based on laser-induced bubbles
    About
    |
    Contact
    |
    Copyright © PubCard