(Peer-Reviewed) Polarization-switchable plasmonic emitters based on laser-induced bubbles
Jianjun Chen ¹ ² ³ ⁴ ⁵ 陈建军, Fengyuan Gan 甘峰源 ²
¹ Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
中国 北京 北京师范大学物理学系 北京市应用光学重点实验室
² State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
中国 北京 北京大学 人工微结构和介观物理国家重点实验室
³ Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
中国 北京 北京大学 长三角光电科学研究院
⁴ Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China
中国 北京 北京大学 纳光电子前沿科学中心 量子物质科学协同创新中心
⁵ Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
中国 太原 山西省极端光学协同创新中心
Opto-Electronic Advances, 2022-05-27

Owing to weak light-matter interactions in natural materials, it is difficult to dynamically tune and switch emission polarization states of plasmonic emitters (or antennas) at nanometer scales. Here, by using a control laser beam to induce a bubble (n=1.0) in water (n=1.333) to obtain a large index variation as high as |Δn|=0.333, the emission polarization of an ultra-small plasmonic emitter (~0.4λ2) is experimentally switched at nanometer scales.

The plasmonic emitter consists of two orthogonal subwavelength metallic nanogroove antennas on a metal surface, and the separation of the two antennas is only sx=120 nm. The emission polarization state of the plasmonic emitter is related to the phase difference between the emission light from the two antennas. Because of a large refractive index variation (|Δn|=0.333), the phase difference is greatly changed when a microbubble emerges in water under a low-intensity control laser.

As a result, the emission polarization of the ultra-small plasmonic emitter is dynamically switched from an elliptical polarization state to a linear polarization state, and the change of the degree of linear polarization is as high as Δγ≈0.66.
Polarization-switchable plasmonic emitters based on laser-induced bubbles_1
Polarization-switchable plasmonic emitters based on laser-induced bubbles_2
Polarization-switchable plasmonic emitters based on laser-induced bubbles_3
  • Natural history and cycle threshold values analysis of COVID-19 in Xiamen City, China
  • Bin Deng, Weikang Liu, Zhinan Guo, Li Luo, Tianlong Yang, Jiefeng Huang, Buasiyamu Abudunaibi, Yidun Zhang, Xue Ouyang, Demeng Wang, Chenghao Su, Tianmu Chen
  • Infectious Disease Modelling
  • 2022-08-09
  • Terahertz generation from laser-induced plasma
  • Wenfeng Sun, Xinke Wang, Yan Zhang
  • Opto-Electronic Science
  • 2022-08-04
  • Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives
  • Ahmed Elbanna, Ksenia Chaykun, Yulia Lekina, Yuanda Liu, Benny Febriansyah, Shuzhou Li, Jisheng Pan, Ze Xiang Shen, Jinghua Teng
  • Opto-Electronic Science
  • 2022-08-04
  • Microchip imaging cytometer: making healthcare available, accessible, and affordable
  • Xilong Yuan, Todd Darcie, Ziyin Wei, J Stewart Aitchison
  • Opto-Electronic Advances
  • 2022-08-03
  • Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth
  • Siqi Yan, Yan Zuo, Sanshui Xiao, Leif Katsuo Oxenløwe, Yunhong Ding
  • Opto-Electronic Advances
  • 2022-07-29
  • Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems
  • Ja Hoon Koo, Huiwon Yun, Woongchan Lee, Sung-Hyuk Sunwoo, Hyung Joon Shim, Dae-Hyeong Kim
  • Opto-Electronic Advances
  • 2022-07-28
  • A review and a statistical analysis of porosity in metals additively manufactured by laser powder bed fusion
  • Dawei Wang, Huili Han, Bo Sa, Kelin Li, Jujie Yan, Jiazhen Zhang, Jianguang Liu, Zhengdi He, Ning Wang, Ming Yan
  • Opto-Electronic Advances
  • 2022-07-27
  • The real-time dynamic holographic display of LN:Bi,Mg crystals and defect-related electron mobility
  • Shuolin Wang, Yidong Shan, Dahuai Zheng, Shiguo Liu, Fang Bo, Hongde Liu, Yongfa Kong, Jingjun Xu
  • Opto-Electronic Advances
  • 2022-07-27
  • 0.35% THz pulse conversion efficiency achieved by Ti:sapphire femtosecond laser filamentation in argon at 1 kHz repetition rate
  • Zhiqiang Yu, Nan Zhang, Jianxin Wang, Zijie Dai, Cheng Gong, Lie Lin, Lanjun Guo, Weiwei Liu
  • Opto-Electronic Advances
  • 2022-07-27
  • Functional isolation, culture and cryopreservation of adult human primary cardiomyocytes
  • Bingying Zhou, Xun Shi, Xiaoli Tang, Quanyi Zhao, Le Wang, Fang Yao, Yongfeng Hou, Xianqiang Wang, Wei Feng, Liqing Wang, Xiaogang Sun, Li Wang, Shengshou Hu
  • Signal Transduction and Targeted Therapy
  • 2022-07-27
  • Ultrahigh-resolution on-chip spectrometer with silicon photonic resonators
  • Long Zhang, Ming Zhang, Tangnan Chen, Dajian Liu, Shihan Hong, Daoxin Dai
  • Opto-Electronic Advances
  • 2022-07-25
  • Highly sensitive and fast response strain sensor based on evanescently coupled micro/nanofibers
  • Wen Yu, Ni Yao, Jing Pan, Wei Fang, Xiong Li, Limin Tong, Lei Zhang
  • Opto-Electronic Advances
  • 2022-07-15

  • Relationship between adjustment of low water level and utilization of water depth in Shashi Reach in middle Yangtze River                                Research on Visual Detection Algorithm for Groove Feature Sizes by Means of Structured Light Projection
    Copyright © PubCard