Year
Month
(Peer-Reviewed) Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms
Hai-Yang Wu 吴海洋 ¹ ² ³, Lei Yang 杨磊 ¹ ² ³, Jiang-Shan Tu ¹ ² ³, Jie Wang 王杰 ⁴, Jin-Ge Li 李金歌 ¹ ² ³, Hong-Ying Lv 吕红英 ¹ ³, Xiao-Niu Yang 杨小牛 ¹ ² ³
¹ State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
中国 长春 中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室
² School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
中国 合肥 中国科学技术大学应用化学与工程学院
³ Polymer Composite Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
中国 长春 中国科学院长春应用化学研究所 高分子复合材料工程实验室
⁴ Huangpu Institute of Advanced Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Guangzhou 510530, China
中国 广州 中国科学院长春应用化学研究所 黄埔先进材料研究所
Abstract

Many cell-matrix interaction studies have proved that dynamic changes in the extracellular matrix (ECM) are crucial to maintain cellular properties and behaviors. Thus, developing materials that can recapitulate the dynamic attributes of the ECM is highly desired for three-dimensional (3D) cell culture platforms.

To this end, we sought to develop a hydrogel system that would enable dynamic and reversible turning of its mechanical and biochemical properties, thus facilitating the control of cell culture to imitate the natural ECM. Herein, a hydrogel with dynamic mechanics and a biochemistry based on an addition-fragmentation chain transfer (AFCT) reaction was constructed. Thiol-modified hyaluronic acid (HA) and allyl sulfide-modified ε-poly-L-lysine (EPL) were synthesized to form hydrogels, which were non-swellable and biocompatible.

The reversible modulus of the hydrogel was first achieved through the AFCT reaction; the modulus can also be regulated stepwise by changing the dose of UVA irradiation. Dynamic patterning of fluorescent markers in the hydrogel was also realized. Therefore, this dynamically controllable hydrogel has great potential as a 3D cell culture platform for tissue engineering applications.
Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms_1
Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms_2
Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms_3
Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms_4
  • IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
  • Xuan Yu, Zhilin Teng, Xuhao Fan, Tianchi Liu, Wenbin Chen, Xinger Wang, Zhe Zhao, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2025-10-25
  • Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
  • Meng Wang, Dehai Liang1, Saif M. H. Qaid, Shuangyi Zhao, Yingjie Liu, Zhigang Zang
  • Opto-Electronic Advances
  • 2025-10-25
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
  • Fujie Li, Haoyu Zhang, Zhilan Lu, Li Yao, Yuan Wei, Ziwei Li, Feng Bao, Junwen Zhang, Yingjun Zhou, Nan Chi
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16
  • Halide perovskite volatile unipolar nanomemristor
  • Abolfazl Mahmoodpoor, Prokhor A. Alekseev, Ksenia A. Gasnikova, Kuzmenko Natalia, Artem Larin, Sergey Makarov Aleksandra Furasova
  • Opto-Electronic Advances
  • 2025-10-15
  • Recent advances in exciton-polariton in perovskite
  • Khalil As'ham, Andergachew Mekonnen Berhe, Ibrahim A. M. Al-Ani, Haroldo T. Hattori, Andrey E. Miroshnichenko
  • Opto-Electronic Science
  • 2025-09-25
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25



  • Clustering Solver for Displacement-based Numerical Homogenization                                Construction of bifunctional single-atom catalysts on the optimized β-Mo₂C surface for highly selective hydrogenation of CO₂ into ethanol
    About
    |
    Contact
    |
    Copyright © PubCard