Year
Month
(Peer-Reviewed) Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms
Hai-Yang Wu 吴海洋 ¹ ² ³, Lei Yang 杨磊 ¹ ² ³, Jiang-Shan Tu ¹ ² ³, Jie Wang 王杰 ⁴, Jin-Ge Li 李金歌 ¹ ² ³, Hong-Ying Lv 吕红英 ¹ ³, Xiao-Niu Yang 杨小牛 ¹ ² ³
¹ State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
中国 长春 中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室
² School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
中国 合肥 中国科学技术大学应用化学与工程学院
³ Polymer Composite Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
中国 长春 中国科学院长春应用化学研究所 高分子复合材料工程实验室
⁴ Huangpu Institute of Advanced Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Guangzhou 510530, China
中国 广州 中国科学院长春应用化学研究所 黄埔先进材料研究所
Abstract

Many cell-matrix interaction studies have proved that dynamic changes in the extracellular matrix (ECM) are crucial to maintain cellular properties and behaviors. Thus, developing materials that can recapitulate the dynamic attributes of the ECM is highly desired for three-dimensional (3D) cell culture platforms.

To this end, we sought to develop a hydrogel system that would enable dynamic and reversible turning of its mechanical and biochemical properties, thus facilitating the control of cell culture to imitate the natural ECM. Herein, a hydrogel with dynamic mechanics and a biochemistry based on an addition-fragmentation chain transfer (AFCT) reaction was constructed. Thiol-modified hyaluronic acid (HA) and allyl sulfide-modified ε-poly-L-lysine (EPL) were synthesized to form hydrogels, which were non-swellable and biocompatible.

The reversible modulus of the hydrogel was first achieved through the AFCT reaction; the modulus can also be regulated stepwise by changing the dose of UVA irradiation. Dynamic patterning of fluorescent markers in the hydrogel was also realized. Therefore, this dynamically controllable hydrogel has great potential as a 3D cell culture platform for tissue engineering applications.
Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms_1
Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms_2
Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms_3
Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms_4
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25
  • Meta-lens digital image correlation
  • Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
  • Opto-Electronic Advances
  • 2025-07-29
  • Multi-resonance enhanced photothermal synergistic fiber-optic Tamm plasmon polariton tip for high-sensitivity and rapid hydrogen detection
  • Xinran Wei, Yuzhang Liang, Xuhui Zhang, Rui Li, Haonan Wei, Yijin He, Lanlan Shen, Yurui Fang, Ting Xu, Wei Peng
  • Opto-Electronic Science
  • 2025-07-25
  • Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
  • Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
  • Opto-Electronic Science
  • 2025-07-25
  • Non-volatile reconfigurable planar lightwave circuit splitter enabled by laser-directed Sb2S3 phase transitions
  • Shixin Gao, Tun Cao, Haonan Ren, Jingzhe Pang, Ran Chen, Yang Ren, Zhenqing Zhao, Xiaoming Chen, Dongming Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Progress in metalenses: from single to array
  • Chang Peng, Jin Yao, Din Ping Tsai
  • Opto-Electronic Technology
  • 2025-07-18
  • 30 years of nanoimprint: development, momentum and prospects
  • Wei-Kuan Lin, L. Jay Guo
  • Opto-Electronic Technology
  • 2025-07-18
  • Review for wireless communication technology based on digital encoding metasurfaces
  • Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
  • Opto-Electronic Advances
  • 2025-07-17
  • Coulomb attraction driven spontaneous molecule-hotspot paring enables universal, fast, and large-scale uniform single-molecule Raman spectroscopy
  • Lihong Hong, Haiyao Yang, Jianzhi Zhang, Zihan Gao, Zhi-Yuan Li
  • Opto-Electronic Advances
  • 2025-07-17



  • Clustering Solver for Displacement-based Numerical Homogenization                                Construction of bifunctional single-atom catalysts on the optimized β-Mo₂C surface for highly selective hydrogenation of CO₂ into ethanol
    About
    |
    Contact
    |
    Copyright © PubCard