Year
Month
(Peer-Reviewed) Construction of bifunctional single-atom catalysts on the optimized β-Mo₂C surface for highly selective hydrogenation of CO₂ into ethanol
Xue Ye 叶雪 ¹ ², Junguo Ma 马俊国 ¹, Wenguang Yu ³, Xiaoli Pan 潘晓丽 ³, Chongya Yang 杨冲亚 ¹ ², Chang Wang 王畅 ³, Qinggang Liu 刘清港 ¹, Yanqiang Huang 黄延强 ¹
¹ CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
中国 大连 中国科学院大连化学物理研究所 催化基础国家重点实验室
² China University of Chinese Academy of Science, Beijing 100049, China
中国 北京 中国科学院大学
³ Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
中国 大连 中国科学院大连化学物理研究所
Abstract

Green and economical CO₂ utilization is significant for CO₂ emission reduction and energy development. Here, the 1D Mo₂C nanowires with dominant (101) crystal surfaces were modified by the deposition of atomic functional components Rh and K. While unmodified β­Mo2C could only convert CO₂ to methanol, the designed catalyst of K₀.₂Rh₀.₂/β-Mo₂C exhibited up to 72.1% of ethanol selectivity at 150 °C. It was observed that the atomically dispersed Rh could form the bifunctional active centres with the active carrier β­Mo2C with the synergistic effects to achieve highly specific controlled C–C coupling.

By promoting the CO₂ adsorption and activation, the introduction of an alkali metal (K) mainly regulated the balanced performance of the two active centres, which in turn improved the hydrogenation selectivity. Overall, the controlled modification of β­Mo₂C provides a new design strategy for the highly efficient, low-temperature hydrogenation of CO₂ to ethanol with single-atom catalysts, which provides an excellent example for the rational design of the complex catalysts.

Graphical abstract

Controlled C–C coupling to ethanol: The single-atom catalyst (SAC) with synergistic bifunctional effects has been developed to achieve the controlled C–C coupling to ethanol from CO₂ hydrogenation. A third component (K) was effectively incorporated to regulate the balanced kinetics of the two functions, thus, giving superior ethanol selectivity at the mild conditions.
Construction of bifunctional single-atom catalysts on the optimized β-Mo₂C surface for highly selective hydrogenation of CO₂ into ethanol_1
Construction of bifunctional single-atom catalysts on the optimized β-Mo₂C surface for highly selective hydrogenation of CO₂ into ethanol_2
Construction of bifunctional single-atom catalysts on the optimized β-Mo₂C surface for highly selective hydrogenation of CO₂ into ethanol_3
  • Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
  • Yongwei Yao, Yaping Zhang, Huanrong He, Xianfeng David Gu, Daping Chu, Ting-Chung Poon
  • Opto-Electronic Advances
  • 2025-11-25
  • Partially coherent optical chip enables physical-layer public-key encryption
  • Bo Wu, Wenkai Zhang, Hailong Zhou, Jianji Dong, Yilun Wang, Xinliang Zhang
  • Opto-Electronic Advances
  • 2025-11-25
  • Advanced applications of pulsed laser deposition in electrocatalysts for hydrogen-electric conversion systems
  • Yuanyuan Zhou, Yong Wang, Ke Zhang, Huaqian Leng, Peter Müller-Buschbaum, Nian Li, Liang Qiao
  • Opto-Electronic Advances
  • 2025-11-25
  • A review on optical torques: from engineered light fields to objects
  • Tao He, Jingyao Zhang, Din Ping Tsai, Junxiao Zhou, Haiyang Huang, Weicheng Yi, Zeyong Wei Yan Zu, Qinghua Song, Zhanshan Wang, Cheng-Wei Qiu, Yuzhi Shi, Xinbin Cheng
  • Opto-Electronic Science
  • 2025-11-25
  • IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
  • Xuan Yu, Zhilin Teng, Xuhao Fan, Tianchi Liu, Wenbin Chen, Xinger Wang, Zhe Zhao, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2025-10-25
  • Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
  • Meng Wang, Dehai Liang1, Saif M. H. Qaid, Shuangyi Zhao, Yingjie Liu, Zhigang Zang
  • Opto-Electronic Advances
  • 2025-10-25
  • Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
  • Tianxu Jia, Youngsun Jeon Lv Feng Hongyoon Kim, Bingjue Li, Guanghao Rui, Junsuk Rho
  • Opto-Electronic Advances
  • 2025-10-25
  • Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
  • Fujie Li, Haoyu Zhang, Zhilan Lu, Li Yao, Yuan Wei, Ziwei Li, Feng Bao, Junwen Zhang, Yingjun Zhou, Nan Chi
  • Opto-Electronic Advances
  • 2025-10-25
  • Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
  • Desiree Santano, Abian B. Socorro, Ambra Giannetti, Ignacio Del Villar, Francesco Chiavaioli
  • Opto-Electronic Science
  • 2025-10-16
  • Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
  • Yan Wang, Yichang Shou, Jiawei Liu, Qiang Yang, Shizhen Chen, Weixing Shu, Shuangchun Wen, Hailu Luo
  • Opto-Electronic Science
  • 2025-10-16
  • Halide perovskite volatile unipolar nanomemristor
  • Abolfazl Mahmoodpoor, Prokhor A. Alekseev, Ksenia A. Gasnikova, Kuzmenko Natalia, Artem Larin, Sergey Makarov Aleksandra Furasova
  • Opto-Electronic Advances
  • 2025-10-15
  • Recent advances in exciton-polariton in perovskite
  • Khalil As'ham, Andergachew Mekonnen Berhe, Ibrahim A. M. Al-Ani, Haroldo T. Hattori, Andrey E. Miroshnichenko
  • Opto-Electronic Science
  • 2025-09-25



  • Hydrogels with Dynamically Controllable Mechanics and Biochemistry for 3D Cell Culture Platforms                                Climate Suitability Assessment of Human Settlements for Regions along the Belt and Road
    About
    |
    Contact
    |
    Copyright © PubCard