(Peer-Reviewed) Synchronization in PT-symmetric optomechanical resonators
Chang-Long Zhu ¹, Yu-Long Liu 刘玉龙 ², Lan Yang 杨兰 ³, Yu-Xi Liu 刘玉玺 ⁴ ⁵, Jing Zhang 张靖 ¹ ⁵
¹ Department of Automation, Tsinghua University, Beijing 100084, China
中国 北京 清华大学自动化系
² Beijing Academy of Quantum Information Sciences, Beijing 100193, China
中国 北京 北京量子信息科学研究院
³ Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130, USA
⁴ Institute of Microelectronics, Tsinghua University, Beijing 100084, China
中国 北京 清华大学微电子学研究所
⁵ Center for Quantum Information Science and Technology, BNRist, Beijing 100084, China
中国 北京 清华信息科学与技术国家实验室 量子信息科学与技术中心
Abstract
Synchronization has great impacts in various fields such as self-clocking, communication, and neural networks. Here, we present a mechanism of synchronization for two mechanical modes in two coupled optomechanical resonators with a parity-time (PT)-symmetric structure.
It is shown that the degree of synchronization between the two far-off-resonant mechanical modes can be increased by decreasing the coupling strength between the two optomechanical resonators due to the large amplification of optomechanical interaction near the exceptional point.
Additionally, when we consider the stochastic noises in the optomechanical resonators by working near the exceptional point, we find that more noises can enhance the degree of synchronization of the system under a particular parameter regime. Our results open up a new dimension of research for PT-symmetric systems and synchronization.
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
Opto-Electronic Advances
2025-09-25
Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
Opto-Electronic Advances
2025-09-25