(Peer-Reviewed) Time-dependent borehole stability in hard-brittle shale
Chuan-Liang Yan 闫传梁 ¹ ², Lei-Feng Dong 董磊峰 ², Kai Zhao 赵凯 ³. Yuan-Fang Cheng 程远方 ¹ ², Xiao-Rong Li 李晓蓉 ⁴, Jin-Gen Deng 邓金根 ⁴, Zhen-Qi Li ², Yong Chen 陈勇 ²
¹ Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, 266580, Shandong, China
中国 山东 青岛 中国石油大学(华东) 非常规油气开发教育部重点实验室
² School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
中国 青岛 中国石油大学(华东)石油工程学院
³ College of Petroleum Engineering, Xi’an Shiyou University, Xi'an, 710065, Shaanxi, China
中国 西安 西安石油大学石油工程学院
⁴ State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing, 102249, China
中国 北京 中国石油大学(北京)油气资源与探测国家重点实验室
Abstract
Rock damage appears in brittle shale even prior to peak stress (i.e., before failure) due to the occurrence of microcracks in these rocks. In this work, a coupled hydromechanical model was built by incorporating the mechanical and fluid seepage induced stresses around a wellbore during drilling. The borehole instability mechanism of hard-brittle shale was studied. The results show that even if a well were simply drilled into a hard-brittle shale formation, the formation around the borehole can be subjected to rock damage.
The maximum failure ratio of the formation around the borehole increases with drilling time. A lower drilling fluid density corresponds to a faster increase in the failure ratio of the borehole with time and a shorter period of borehole collapse. When the initial drilling fluid density is too low, serious rock damage occurs in the formation around the borehole. Even though a high-density drilling fluid is used after drilling, long-term borehole stability is difficult to maintain. While drilling in hard-brittle shale, drilling fluid with a proper density should be used rather than increasing the density of the drilling fluid only after borehole collapse occurs, which is more favorable for maintaining long-term borehole stability.
Embedded solar adaptive optics telescope: achieving compact integration for high-efficiency solar observations
Naiting Gu, Hao Chen, Ao Tang, Xinlong Fan, Carlos Quintero Noda, Yawei Xiao, Libo Zhong, Xiaosong Wu, Zhenyu Zhang, Yanrong Yang, Zao Yi, Xiaohu Wu, Linhai Huang, Changhui Rao
Opto-Electronic Advances
2025-05-27
Wearable photonic smart wristband for cardiorespiratory function assessment and biometric identification
Wenbo Li, Yukun Long, Yingyin Yan, Kun Xiao, Zhuo Wang, Di Zheng, Arnaldo Leal-Junior, Santosh Kumar, Beatriz Ortega, Carlos Marques, Xiaoli Li, Rui Min
Opto-Electronic Advances
2025-05-27
Integrated photonic polarizers with 2D reduced graphene oxide
Junkai Hu, Jiayang Wu, Di Jin, Wenbo Liu, Yuning Zhang, Yunyi Yang, Linnan Jia, Yijun Wang, Duan Huang, Baohua Jia, David J. Moss
Opto-Electronic Science
2025-05-22
Structural color: an emerging nanophotonic strategy for multicolor and functionalized applications
Wenhao Wang, Long Wang, Qianqian Fu, Wang Zhang, Liuying Wang, Gu Liu, Youju Huang, Jie Huang, Haoyuan Zhang, Fuqiang Guo, Xiaohu Wu
Opto-Electronic Science
2025-04-25