Year
Month
(Peer-Reviewed) Cascade-responsive Nanobomb with domino effect for anti-tumor synergistic therapies
Yang Liu 刘洋 ¹ ², Yinghui Wang 王樱蕙 ¹, Shuyan Song 宋术岩 ¹ ², Hongjie Zhang 张洪杰 ¹ ² ³
¹ State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China 中国科学院 长春应用化学研究所 稀土资源利用国家重点实验室
² School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China 中国科学技术大学 应用化学与工程学院
³ Department of Chemistry, Tsinghua University, Beijing 100084, China 清华大学 化学系
National Science Review, 2021-08-09
Abstract

The development of reactive oxygen species (ROS) generation agents that can selectively produce sufficient ROS at the tumor site without external energy stimulation is of great significance for the further clinical application of ROS-based therapies.

Herein, we designed a cascade-responsive ROS nanobomb (ZnO₂@Ce6/CaP@CPPO/BSA, designated as Z@Ce6/CaP@CB) with domino effect and without external stimulation for the specific generation of multiple powerful ROS storms at the tumor site. The CaP shell and ZnO₂ core gradually degrade and release Ca²⁺, Zn²⁺, and hydrogen peroxide (H₂O₂) under acid stimulation.

On the one hand, Zn²⁺ can enhance the generation of endogenous superoxide anions (·O₂⁻) and H₂O₂ through the inhibition of the mitochondrial electron transport chain (ETC). On the other hand, the generation of large amounts of exogenous H₂O₂ can cause oxidative damage to tumor cells and further activate bis[2,4,5-trichloro-6-(pentyloxycarbonyl)phenyl] oxalate (CPPO)-mediated chemiexcited photodynamic therapy.

In addition, the oxidative stress caused by the generated ROS can lead to the uncontrolled accumulation of Ca²⁺ in cells and further result in Ca²⁺ overload-induced cell death. Therefore, the introduction of Z@Ce6/CaP@CB nanobombs triggered the 'domino effect' that caused multiple heavy ROS storms and Ca²⁺ overload in tumors and effectively activated anti-tumor immune response.
Cascade-responsive Nanobomb with domino effect for anti-tumor synergistic therapies_1
Cascade-responsive Nanobomb with domino effect for anti-tumor synergistic therapies_2
Cascade-responsive Nanobomb with domino effect for anti-tumor synergistic therapies_3
Cascade-responsive Nanobomb with domino effect for anti-tumor synergistic therapies_4
  • Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
  • Zhao Zhang, Gaoyuan Li, Yonglei Liu, Haiyun Wang, Bernhard J. Hoenders, Chunhao Liang, Yangjian Cai, Jun Zeng
  • Opto-Electronic Science
  • 2024-01-31
  • Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
  • Xin Ge, Si Chen, Kan Lin, Guangming Ni, En Bo, Lulu Wang, Linbo Liu
  • Opto-Electronic Science
  • 2024-01-31
  • Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
  • Yuncheng Liu, Ke Xu, Xuhao Fan, Xinger Wang, Xuan Yu, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2024-01-25
  • Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
  • Keyao Li, Yiming Wang, Dapu Pi, Baoli Li, Haitao Luan, Xinyuan Fang, Peng Chen, Yanqing Lu, Min Gu
  • Opto-Electronic Advances
  • 2024-01-25
  • Physics-informed deep learning for fringe pattern analysis
  • Wei Yin, Yuxuan Che, Xinsheng Li, Mingyu Li, Yan Hu, Shijie Feng, Edmund Y. Lam, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2024-01-25
  • Advancing computer-generated holographic display thanks to diffraction model-driven deep nets
  • Vittorio Bianco, Pietro Ferraro
  • Opto-Electronic Advances
  • 2024-01-16
  • Inverse design for material anisotropy and its application for a compact X-cut TFLN on-chip wavelength demultiplexer
  • Jiangbo Lyu, Tao Zhu, Yan Zhou, Zhenmin Chen, Yazhi Pi, Zhengtong Liu, Xiaochuan Xu, Ke Xu, Xu Ma, Lei Wang, Zizheng Cao, Shaohua Yu
  • Opto-Electronic Science
  • 2024-01-09
  • Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging
  • Yuting Xiao, Lianwei Chen, Mingbo Pu, Mingfeng Xu, Qi Zhang, Yinghui Guo, Tianqu Chen, Xiangang Luo
  • Opto-Electronic Science
  • 2024-01-05
  • Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry
  • Chunyan Chu, Zhentao Liu, Mingliang Chen, Xuehui Shao, Guohai Situ, Yuejin Zhao, Shensheng Han
  • Opto-Electronic Advances
  • 2023-3-10
  • Flat soliton microcomb source
  • Xinyu Wang, Xuke Qiu, Mulong Liu, Feng Liu, Mengmeng Li, Linpei Xue, Bohan Chen, Mingran Zhang, Peng Xie
  • Opto-Electronic Science
  • 2023-12-29
  • Smart palm-size optofluidic hematology analyzer for automated imaging-based leukocyte concentration detection
  • Deer Su, Xiangyu Li, Weida Gao, Qiuhua Wei, Haoyu Li, Changliang Guo, Weisong Zhao
  • Opto-Electronic Science
  • 2023-12-28



  • Stabilization of single atom catalysts                                Crowded catalyst, better catalyst
    About
    |
    Contact
    |
    Copyright © PubCard