Year
Month
(Peer-Reviewed) Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization
Yaxin Zhang 张雅鑫 ¹ ³, Mingbo Pu 蒲明博 ¹ ² ³, Jinjin Jin 靳金金 ¹, Xinjian Lu 鹿辛践 ¹ ³, Yinghui Guo 郭迎辉 ¹ ² ³, Jixiang Cai 蔡吉祥 ¹ ⁴, Fei Zhang 张飞 ¹ ², Yingli Ha 哈颖丽 ¹ ², Qiong He 何琼 ¹, Mingfeng Xu 徐明峰 ¹ ², Xiong Li 李雄 ¹ ³, Xiaoliang Ma 马晓亮 ¹ ³, Xiangang Luo 罗先刚 ¹ ³
¹ State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光电技术研究所 微细加工光学技术国家重点实验室
² Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光电技术研究所 矢量光场研究中心
³ School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学光电学院
⁴ Key Laboratory of Optoelectronic Technology and System, Ministry of Education, Chongqing University, Chongqing 400030, China
中国 重庆 重庆大学 光电技术及系统教育部重点实验室
Opto-Electronic Advances, 2022-09-30
Abstract

Imaging polarimetry is one of the most widely used analytical technologies for object detection and analysis. To date, most metasurface-based polarimetry techniques are severely limited by narrow operating bandwidths and inevitable crosstalk, leading to detrimental effects on imaging quality and measurement accuracy.

Here, we propose a crosstalk-free broadband achromatic full Stokes imaging polarimeter consisting of polarization-sensitive dielectric metalenses, implemented by the principle of polarization-dependent phase optimization. Compared with the single-polarization optimization method, the average crosstalk has been reduced over three times under incident light with arbitrary polarization ranging from 9 μm to 12 μm, which guarantees the measurement of the polarization state more precisely.

The experimental results indicate that the designed polarization-sensitive metalenses can effectively eliminate the chromatic aberration with polarization selectivity and negligible crosstalk. The measured average relative errors are 7.08%, 8.62%, 7.15%, and 7.59% at 9.3, 9.6, 10.3, and 10.6 μm, respectively. Simultaneously, the broadband full polarization imaging capability of the device is also verified. This work is expected to have potential applications in wavefront detection, remote sensing, light-field imaging, and so forth.
Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization_1
Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization_2
Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization_3
Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization_4
  • Photo-driven fin field-effect transistors
  • Jintao Fu, Chongqian Leng, Rui Ma, Changbin Nie, Feiying Sun, Genglin Li, Xingzhan Wei
  • Opto-Electronic Science
  • 2024-05-28
  • Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces
  • Tong Nan, Huan Zhao, Jinying Guo, Xinke Wang, Hao Tian, Yan Zhang
  • Opto-Electronic Science
  • 2024-05-28
  • Resonantly enhanced second- and third-harmonic generation in dielectric nonlinear metasurfaces
  • Ji Tong Wang, Pavel Tonkaev, Kirill Koshelev, Fangxing Lai, Sergey Kruk, Qinghai Song, Yuri Kivshar, Nicolae C. Panoiu
  • Opto-Electronic Advances
  • 2024-05-15
  • Liquid crystal-integrated metasurfaces for an active photonic platform
  • Dohyun Kang, Hyeonsu Heo, Younghwan Yang, Junhwa Seong, Hongyoon Kim, Joohoon Kim, Junsuk Rho
  • Opto-Electronic Advances
  • 2024-04-25
  • Fast source mask co-optimization method for high-NA EUV lithography
  • Ziqi Li, Lisong Dong, Xu Ma, Yayi Wei
  • Opto-Electronic Advances
  • 2024-04-25
  • Polariton lasing in Mie-resonant perovskite nanocavity
  • Mikhail A. Masharin, Daria Khmelevskaia, Valeriy I. Kondratiev, Daria I. Markina, Anton D. Utyushev, Dmitriy M. Dolgintsev, Alexey D. Dmitriev, Vanik A. Shahnazaryan, Anatoly P. Pushkarev, Furkan Isik, Ivan V. Iorsh, Ivan A. Shelykh, Hilmi V. Demir, Anton K. Samusev, Sergey V. Makarov
  • Opto-Electronic Advances
  • 2024-04-25
  • High-Q resonant Terahertz metasurfaces
  • Manukumara Manjappa, Yuri Kivshar
  • Opto-Electronic Advances
  • 2024-04-25
  • Efficient stochastic parallel gradient descent training for on-chip optical processor
  • Yuanjian Wan, Xudong Liu, Guangze Wu, Min Yang, Guofeng Yan, Yu Zhang, Jian Wang
  • Opto-Electronic Advances
  • 2024-04-25
  • High-intensity spatial-mode steerable frequency up-converter toward on-chip integration
  • Haizhou Huang, Huaixi Chen, Huagang Liu, Zhi Zhang, Xinkai Feng, Jiaying Chen, Hongchun Wu, Jing Deng, Wanguo Liang, Wenxiong Lin
  • Opto-Electronic Science
  • 2024-04-24
  • Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors
  • Jiao Jiao Liu, Xinxin Yang, Qiulei Xu, Ruiguang Chang, Zhenghui Wu, Huaibin Shen
  • Opto-Electronic Science
  • 2024-04-24
  • Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
  • Ruozhong Han, Yuchan Zhang, Qilin Jiang, Long Chen, Kaiqiang Cao, Shian Zhang, Donghai Feng, Zhenrong Sun, Tianqing Jia
  • Opto-Electronic Science
  • 2024-03-22
  • Optical scanning endoscope via a single multimode optical fiber
  • Guangxing Wu, Runze Zhu, Yanqing Lu, Minghui Hong, Fei Xu
  • Opto-Electronic Science
  • 2024-03-22



  • Towards integrated mode-division demultiplexing spectrometer by deep learning                                Photo-processing of perovskites: current research status and challenges
    About
    |
    Contact
    |
    Copyright © PubCard