(Peer-Reviewed) Towards integrated mode-division demultiplexing spectrometer by deep learning
Ze-huan Zheng 郑泽寰 ¹ ², Sheng-ke Zhu 朱圣科 ¹ ⁴, Ying Chen 陈颖 ³, Huanyang Chen 陈焕阳 ⁵, Jin-hui Chen 陈锦辉 ¹ ⁴ ⁶
¹ Shenzhen Research Institute, Xiamen University, Shenzhen 518000, China
中国 深圳 厦门大学深圳研究院
² Xiamen Power Supply Bureau of Fujian Electric Power Company Limited, State Grid, Xiamen 361004, China
中国 厦门 福建省电力有限公司 厦门供电局
³ College of Information Science and Engineering, Fujian Provincial Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen 361021, China
福建省光传输与变换重点实验室 华侨大学信息科学与工程学院
⁴ Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China
中国 厦门 厦门大学电磁声学研究院
⁵ College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
中国 厦门 厦门大学物理科学与技术学院
⁶ Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
中国 厦门 中国福建能源材料科学与技术创新实验室(嘉庚创新实验室)
Opto-Electronic Science, 2022-11-01

Miniaturized spectrometers have been widely researched in recent years, but few studies are conducted with on-chip multimode schemes for mode-division multiplexing (MDM) systems. Here we propose an ultracompact mode-division demultiplexing spectrometer that includes branched waveguide structures and graphene-based photodetectors, which realizes simultaneously spectral dispersing and light fields detecting.

In the bandwidth of 1500–1600 nm, the designed spectrometer achieves the single-mode spectral resolution of 7 nm for each mode of TE1–TE4 by Tikhonov regularization optimization. Empowered by deep learning algorithms, the 15-nm resolution of parallel reconstruction for TE1–TE4 is achieved by a single-shot measurement. Moreover, by stacking the multimode response in TE1–TE4 to the single spectra, the 3-nm spectral resolution is realized.

This design reveals an effective solution for on-chip MDM spectroscopy, and may find applications in multimode sensing, interconnecting and processing.
Towards integrated mode-division demultiplexing spectrometer by deep learning_1
Towards integrated mode-division demultiplexing spectrometer by deep learning_2
Towards integrated mode-division demultiplexing spectrometer by deep learning_3
  • Brillouin scattering spectrum for liquid detection and applications in oceanography
  • Yuanqing Wang, Jinghao Zhang, Yongchao Zheng, Yangrui Xu, Jiaqi Xu, Jiao Jiao, Yun Su, Hai-Feng Lü, Kun Liang
  • Opto-Electronic Advances
  • 2022-08-26
  • 3D imaging lipidometry in single cell by in-flow holographic tomography
  • Daniele Pirone, Daniele Sirico, Lisa Miccio, Vittorio Bianco, Martina Mugnano, Danila del Giudice, Gianandrea Pasquinelli, Sabrina Valente, Silvia Lemma, Luisa Iommarini, Ivana Kurelac, Pasquale Memmolo, Pietro Ferraro
  • Opto-Electronic Advances
  • 2022-08-25
  • Carnivorous plants inspired shape-morphing slippery surfaces
  • Dong-Dong Han, Yong-Lai Zhang, Zhao-Di Chen, Ji-Chao Li, Jia-Nan Ma, Jiang-Wei Mao, Hao Zhou, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2022-08-25
  • Piezoresistive design for electronic skin: from fundamental to emerging applications
  • Fang Zhong, Wei Hu, Peining Zhu, Han Wang, Chao Ma, Nan Lin, Zuyong Wang
  • Opto-Electronic Advances
  • 2022-08-25
  • Learning-based joint UAV trajectory and power allocation optimization for secure IoT networks
  • Dan Deng, Xingwang Li, Varun Menon, Md Jalil Piran, Hui Chen, Mian Ahmad Jan
  • Digital Communications and Networks
  • 2022-08-24
  • Label-free trace detection of bio-molecules by liquid-interface assisted surface-enhanced Raman scattering using a microfluidic chip
  • Shi Bai, Xueli Ren, Kotaro Obata, Yoshihiro Ito, Koji Sugioka
  • Opto-Electronic Advances
  • 2022-08-20
  • Spatiotemporal Fourier transform with femtosecond pulses for on-chip devices
  • Yulong Wang, Changjun Min, Yuquan Zhang, Xiaocong Yuan
  • Opto-Electronic Advances
  • 2022-08-10
  • Natural history and cycle threshold values analysis of COVID-19 in Xiamen City, China
  • Bin Deng, Weikang Liu, Zhinan Guo, Li Luo, Tianlong Yang, Jiefeng Huang, Buasiyamu Abudunaibi, Yidun Zhang, Xue Ouyang, Demeng Wang, Chenghao Su, Tianmu Chen
  • Infectious Disease Modelling
  • 2022-08-09
  • Terahertz generation from laser-induced plasma
  • Wenfeng Sun, Xinke Wang, Yan Zhang
  • Opto-Electronic Science
  • 2022-08-04
  • Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives
  • Ahmed Elbanna, Ksenia Chaykun, Yulia Lekina, Yuanda Liu, Benny Febriansyah, Shuzhou Li, Jisheng Pan, Ze Xiang Shen, Jinghua Teng
  • Opto-Electronic Science
  • 2022-08-04
  • Microchip imaging cytometer: making healthcare available, accessible, and affordable
  • Xilong Yuan, Todd Darcie, Ziyin Wei, J Stewart Aitchison
  • Opto-Electronic Advances
  • 2022-08-03
  • Graphene photodetector employing double slot structure with enhanced responsivity and large bandwidth
  • Siqi Yan, Yan Zuo, Sanshui Xiao, Leif Katsuo Oxenløwe, Yunhong Ding
  • Opto-Electronic Advances
  • 2022-07-29

  • Brillouin scattering spectrum for liquid detection and applications in oceanography                                Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization
    Copyright © PubCard