Year
Month
(Peer-Reviewed) Millisecond-level electrically switchable metalens for adaptive rotational depth mapping and diffraction-limited imaging
Yeseul Kim ¹, Jihae Lee ², Won-Sik Kim ², Hyeonsu Heo ¹, Dongmin Jeon ¹, Beomha Yang ³, Xiaotong Li ¹, Harit Keawmuang ¹, Shiqi Hu ¹ ⁹, Young-Ki Kim ², Trevon Badloe ⁴ ⁵, Junsuk Rho ¹ ² ⁶ ⁷ ⁸
¹ Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
² Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
³ Department of Quantum Information Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
⁴ Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
⁵ Division of Smart Energy Convergence Engineering, Korea University, Sejong 30019, Republic of Korea
⁶ Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
⁷ POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea
⁸ National Institute of Nanomaterials Technology (NINT), Pohang 37673 Republic of Korea
⁹ Platform for Real-world Innovation in Smart Manufacturing and AI, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
Opto-Electronic Advances, 2026-02-12
Abstract

We demonstrate an electrically tunable dual-mode metalens capable of polarization-sensitive focal control, combining high-resolution imaging and depth-sensing functionalities into a single compact device. By integrating hydrogenated amorphous silicon (a-Si:H) meta-atoms with a liquid crystal (LC) modulator, the proposed metasurface independently manipulates left- and right-circularly polarized (LCP/RCP) incident light, generating a rotating double-helix focal distribution for LCP and an extended depth-of-focus (DOF) for RCP illumination.

The meta-atoms were rigorously optimized using propagation and geometric phases, enabling precise phase control and high transmittance at a wavelength of 635 nm. Experimental characterization confirmed near-diffraction-limited lateral and axial resolutions, closely aligning with theoretical predictions. The integrated LC cell facilitates milliseconds polarizationswitching between depth-sensitive double-helix and high-resolution DOF imaging modes. We further verified depth-extraction capabilities by analyzing rotation angles from dual-image focal spots under mixed-polarization illumination.

Depth-resolved imaging of a rubber-tree leaf, a skeletal-muscle cross-section, and a live planarian retrieved color-coded depths, demonstrating the effectiveness on complex biological tissues. This polarization-driven, electrically tunable metalens thus provides a versatile and effective optical platform suitable for advanced applications in biomedical imaging, three-dimensional sensing, adaptive optics, and compact imaging systems.
Millisecond-level electrically switchable metalens for adaptive rotational depth mapping and diffraction-limited imaging_1
Millisecond-level electrically switchable metalens for adaptive rotational depth mapping and diffraction-limited imaging_2
Millisecond-level electrically switchable metalens for adaptive rotational depth mapping and diffraction-limited imaging_3
Millisecond-level electrically switchable metalens for adaptive rotational depth mapping and diffraction-limited imaging_4
  • Highly textured single-crystal-like perovskite films for large-area, high-performance photodiodes
  • Runkai Liu, Feng Li, Rongkun Zheng
  • Opto-Electronic Advances
  • 2025-12-25
  • Robust performance of PTQ10:DTY6 in halogen-free photovoltaics across deposition techniques and configurations for industrial scale-up
  • Atiq Ur Rahman, Tanner M. Melody, Sydney Pfleiger, Acacia Patterson, Andrea Reale, Brian A. Collins
  • Opto-Electronic Advances
  • 2025-12-25
  • Surpassing the diffraction limit in long-range laser engineering via cross-scale vectorial optical field manipulation: perspectives and outlooks
  • Yinghui Guo, Mingbo Pu, Yang Li, Mingfeng Xu, Xiangang Luo
  • Opto-Electronic Advances
  • 2025-12-25
  • Spatiotemporal multiplexed photonic reservoir computing: parallel prediction for the high-dimensional dynamics of complex semiconductor laser network
  • Tong Yang, Li-Yue Zhang, Song-Sui Li, Wei Pan, Xi-Hua Zou, Lian-Shan Yan
  • Opto-Electronic Advances
  • 2025-12-25
  • Filament based ionizing radiation sensing
  • Pengfei Qi, Haiyi Liu, Jiewei Guo, Nan Zhang, Lu Sun, Shishi Tao, Binpeng Shang, Lie Lin Weiwei Liu
  • Opto-Electronic Advances
  • 2025-12-25
  • Separation and identification of mixed signal for distributed acoustic sensor using deep learning
  • Huaxin Gu, Jingming Zhang, Xingwei Chen, Feihong Yu, Deyu Xu, Shuaiqi Liu, Weihao Lin, Xiaobing Shi, Zixing Huang, Xiongji Yang, Qingchang Hu, Liyang Shao
  • Opto-Electronic Advances
  • 2025-11-25
  • Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
  • Yongwei Yao, Yaping Zhang, Huanrong He, Xianfeng David Gu, Daping Chu, Ting-Chung Poon
  • Opto-Electronic Advances
  • 2025-11-25
  • Partially coherent optical chip enables physical-layer public-key encryption
  • Bo Wu, Wenkai Zhang, Hailong Zhou, Jianji Dong, Yilun Wang, Xinliang Zhang
  • Opto-Electronic Advances
  • 2025-11-25
  • Advanced applications of pulsed laser deposition in electrocatalysts for hydrogen-electric conversion systems
  • Yuanyuan Zhou, Yong Wang, Ke Zhang, Huaqian Leng, Peter Müller-Buschbaum, Nian Li, Liang Qiao
  • Opto-Electronic Advances
  • 2025-11-25
  • A review on optical torques: from engineered light fields to objects
  • Tao He, Jingyao Zhang, Din Ping Tsai, Junxiao Zhou, Haiyang Huang, Weicheng Yi, Zeyong Wei Yan Zu, Qinghua Song, Zhanshan Wang, Cheng-Wei Qiu, Yuzhi Shi, Xinbin Cheng
  • Opto-Electronic Science
  • 2025-11-25
  • IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
  • Xuan Yu, Zhilin Teng, Xuhao Fan, Tianchi Liu, Wenbin Chen, Xinger Wang, Zhe Zhao, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2025-10-25
  • Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
  • Meng Wang, Dehai Liang1, Saif M. H. Qaid, Shuangyi Zhao, Yingjie Liu, Zhigang Zang
  • Opto-Electronic Advances
  • 2025-10-25



  • Soft chiral superstructure enabled dynamic polychromatic holography                                Ambient-energy-driven space-time-coding metasurface for space-frequency-division multiplexing wireless communications
    About
    |
    Contact
    |
    Copyright © PubCard