Year
Month
(Peer-Reviewed) Thermo-Economic Modeling and Evaluation of Physical Energy Storage in Power System
HU Shan 胡珊 ¹, LIU Chang 刘畅 ¹, DING Jie 丁捷 ¹ ², XU Yujie 徐玉杰 ¹ ², CHEN Haisheng 陈海生 ¹ ² ³, ZHOU Xuezhi 周学志 ³
¹ Institute of Engineering Thermophysics, Chinese Academy of Science, Beijing 100190, China
中国 北京 中国科学院工程热物理研究所
² University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学
³ National Energy Large Scale Physical Energy Storage Technologies R&D Center, Bijie 551712, China
中国 毕节 国家能源大规模物理储能技术研发中心
Abstract

In order to assess the electrical energy storage technologies, the thermo-economy for both capacity-type and power-type energy storage are comprehensively investigated with consideration of political, environmental and social influence. And for the first time, the Exergy Economy Benefit Ratio (EEBR) is proposed with thermo-economic model and applied to three different storage systems in various scenarios, including pumped storage, compressed air energy storage and flywheel energy storage. The impact of the total system efficiency, annual utilization hour, life time, and other key factors are also analyzed.

The results show that the EEBRs of pumped storage and compressed air energy storage under peak load shaving condition and flywheel energy storage under frequency modulation service condition are all larger than zero, which means they are all thermo-economically feasible. With extra consideration of political, environmental and social impact, the exergy cost could reduce by about 25% and the EEBR doubles. The sensitivity analysis indicates the similarity and diversity of influence to EEBR between capacity-type and power-type energy storage systems. The former is that energy efficiency is the dominated factor for all three storage systems. The latter is that the difference of exergy benefit mode causes variety in other major factors.

For energy-type storage system, like pumped storage and compressed air storage, the peak-to-valley price ratio is very sensitive in energy arbitrage. For power-type storage system, like flywheel storage, the mileage ratio is in leading position in auxiliary service benefit by mileage. In the three cases studied, the pumped storage has the best thermo-economy; the compressed air energy storage is the second, and the flywheel energy storage is the third. The main reason is that the pumped storage has the least non-exergy cost, and flywheel has the most.
Thermo-Economic Modeling and Evaluation of Physical Energy Storage in Power System_1
Thermo-Economic Modeling and Evaluation of Physical Energy Storage in Power System_2
Thermo-Economic Modeling and Evaluation of Physical Energy Storage in Power System_3
Thermo-Economic Modeling and Evaluation of Physical Energy Storage in Power System_4
  • Ultrahigh performance passive radiative cooling by hybrid polar dielectric metasurface thermal emitters
  • Yinan Zhang, Yinggang Chen, Tong Wang, Qian Zhu, Min Gu
  • Opto-Electronic Advances
  • 2024-03-12
  • Simultaneously realizing thermal and electromagnetic cloaking by multi-physical null medium
  • Yichao Liu, Xiaomin Ma, Kun Chao, Fei Sun, Zihao Chen, Jinyuan Shan, Hanchuan Chen, Gang Zhao, Shaojie Chen
  • Opto-Electronic Science
  • 2024-02-29
  • Generation of lossy mode resonances (LMR) using perovskite nanofilms
  • Dayron Armas, Ignacio R. Matias, M. Carmen Lopez-Gonzalez, Carlos Ruiz Zamarreño, Pablo Zubiate, Ignacio del Villar, Beatriz Romero
  • Opto-Electronic Advances
  • 2024-02-26
  • Acousto-optic scanning multi-photon lithography with high printing rate
  • Minghui Hong
  • Opto-Electronic Advances
  • 2024-02-26
  • Tailoring electron vortex beams with customizable intensity patterns by electron diffraction holography
  • Pengcheng Huo, Ruixuan Yu, Mingze Liu, Hui Zhang, Yan-qing Lu, Ting Xu
  • Opto-Electronic Advances
  • 2024-02-26
  • Miniature tunable Airy beam optical meta-device
  • Jing Cheng Zhang, Mu Ku Chen, Yubin Fan, Qinmiao Chen, Shufan Chen, Jin Yao, Xiaoyuan Liu, Shumin Xiao, Din Ping Tsai
  • Opto-Electronic Advances
  • 2024-02-26
  • Data-driven polarimetric imaging: a review
  • Kui Yang, Fei Liu, Shiyang Liang, Meng Xiang, Pingli Han, Jinpeng Liu, Xue Dong, Yi Wei, Bingjian Wang, Koichi Shimizu, Xiaopeng Shao
  • Opto-Electronic Science
  • 2024-02-24
  • Robust measurement of orbital angular momentum of a partially coherent vortex beam under amplitude and phase perturbations
  • Zhao Zhang, Gaoyuan Li, Yonglei Liu, Haiyun Wang, Bernhard J. Hoenders, Chunhao Liang, Yangjian Cai, Jun Zeng
  • Opto-Electronic Science
  • 2024-01-31
  • Deblurring, artifact-free optical coherence tomography with deconvolution-random phase modulation
  • Xin Ge, Si Chen, Kan Lin, Guangming Ni, En Bo, Lulu Wang, Linbo Liu
  • Opto-Electronic Science
  • 2024-01-31
  • Dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates
  • Yuncheng Liu, Ke Xu, Xuhao Fan, Xinger Wang, Xuan Yu, Wei Xiong, Hui Gao
  • Opto-Electronic Advances
  • 2024-01-25
  • Multi-dimensional multiplexing optical secret sharing framework with cascaded liquid crystal holograms
  • Keyao Li, Yiming Wang, Dapu Pi, Baoli Li, Haitao Luan, Xinyuan Fang, Peng Chen, Yanqing Lu, Min Gu
  • Opto-Electronic Advances
  • 2024-01-25
  • Physics-informed deep learning for fringe pattern analysis
  • Wei Yin, Yuxuan Che, Xinsheng Li, Mingyu Li, Yan Hu, Shijie Feng, Edmund Y. Lam, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2024-01-25



  • Improved resilience measure for component recovery priority in power grids                                Nanobridged rhombic antennas supporting both dipolar and high-order plasmonic modes with spatially superimposed hotspots in the mid-infrared
    About
    |
    Contact
    |
    Copyright © PubCard