Year
Month
(Peer-Reviewed) Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks
Bin He 何斌 ¹, Chen Chen ², Shangrong Lin ³, Wenping Yuan 袁文平 ³, Hans W Chen ⁴, Deliang Chen 陈德亮 ⁵, Yafeng Zhang 张亚峰 ¹, Lanlan Guo 郭兰兰 ¹ ⁶, Xiang Zhao 赵祥 ⁷, Xuebang Liu ¹, Shilong Piao 朴世龙 ⁸, Ziqian Zhong ¹, Rui Wang ¹, Rui Tang ¹
¹ State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
中国 北京 北京师范大学地表过程与资源生态国家重点实验室, 北京师范大学全球变化与地球系统科学研究院
² Twenty First Century Aerospace Technology Co., Ltd., Beijing 100723, China
中国 北京 二十一世纪空间技术应用股份有限公司
³ School of Atmospheric Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai 519082, China
中国 珠海 中山大学南方海洋科学与工程广东省实验室(珠海)
⁴ Department of Physical Geography and Ecosystem Science, Lund University, Lund S-223 64, Sweden
⁵ Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg S-40530, Sweden
⁶ Academy of Disaster Reduction and Emergency Management, School of Geography, Beijing Normal University, Beijing 100875, China
中国 北京 北京师范大学地理科学学部减灾与应急管理研究院
⁷ State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
中国 北京 北京师范大学遥感科学国家重点实验室,北京师范大学地理科学学部
⁸ Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
中国 北京 北京大学中法地球系统科学中心,北京大学城市与环境学院
National Science Review, 2021-08-20
Abstract

Interannual variability of the terrestrial ecosystem carbon sink is substantially regulated by various environmental variables and highly dominates the interannual variation of atmospheric carbon dioxide (CO2) concentrations. Thus, it is necessary to determine dominating factors affecting the interannual variability of the carbon sink to improve our capability of predicting future terrestrial carbon sinks.

Using global datasets derived from machine learning methods and process-based ecosystem models, this study reveals that the interannual variability of the atmospheric vapor pressure deficit (VPD) was significantly negatively correlated with net ecosystem production (NEP) and substantially impacted the interannual variability of the atmospheric CO2 growth rate (CGR). Further analyses found widespread constraints of VPD interannual variability on terrestrial gross primary production (GPP), causing VPD to impact NEP and CGR.

Partial correlation analysis confirms the persistent and widespread impacts of VPD on terrestrial carbon sinks compared to other environmental variables. Current Earth system models underestimate the interannual variability in VPD and its impacts on GPP and NEP. Our results highlight the importance of VPD for terrestrial carbon sinks in assessing ecosystems’ responses to future climate conditions.
Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks_1
Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks_2
Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks_3
Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks_4
  • OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • Taigao Ma, Haozhu Wang, L. Jay Guo
  • Opto-Electronic Advances
  • 2024-07-10
  • Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
  • Xuan Yang, Xinfeng Zhang, Tianxu Zhang, Linyi Xiang, Bin Xie, Xiaobing Luo
  • Opto-Electronic Advances
  • 2024-07-05
  • Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
  • Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
  • Opto-Electronic Advances
  • 2024-07-05
  • Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
  • Yuxin Tian, Boyu Dong, Yaxuan Li, Bing Xiong, Junwen Zhang, Changzheng Sun, Zhibiao Hao, Jian Wang, Lai Wang, Yanjun Han, Hongtao Li, Lin Gan, Nan Chi, Yi Luo
  • Opto-Electronic Science
  • 2024-07-01
  • Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
  • Shasha Li, Yini Fang, Jianfang Wang
  • Opto-Electronic Science
  • 2024-06-28
  • Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots
  • Anir S. Sharbirin, Rebekah E. Kong, Wendy B. Mato, Trang Thu Tran, Eunji Lee, Jolene W. P. Khor, Afrizal L. Fadli, Jeongyong Kim
  • Opto-Electronic Advances
  • 2024-06-28
  • High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses
  • Kotaro Obata, Shota Kawabata, Yasutaka Hanada, Godai Miyaji, Koji Sugioka
  • Opto-Electronic Science
  • 2024-06-24
  • Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution
  • Xin Xu, Qin Luo, Jixiang Wang, Yahui Song, Hong Ye, Xin Zhang, Yi He, Minxuan Sun, Ruobing Zhang, Guohua Shi
  • Opto-Electronic Advances
  • 2024-06-11
  • Seeing at a distance with multicore fibers
  • Haogong Feng, Xi Chen, Runze Zhu, Yifeng Xiong, Ye Chen, Yanqing Lu, Fei Xu
  • Opto-Electronic Advances
  • 2024-06-05
  • NIR-triggered on-site NO/ROS/RNS nanoreactor: Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation
  • Ziqing Xu, Yakun Kang, Jie Zhang, Jiajia Tang, Hanyao Sun, Yang Li, Doudou He, Xuan Sha, Yuxia Tang, Ziyi Fu, Feiyun Wu, Shouju Wang
  • Opto-Electronic Advances
  • 2024-06-05
  • Reconfigurable optical neural networks with Plug-and-Play metasurfaces
  • Yongmin Liu, Yuxiao Li
  • Opto-Electronic Advances
  • 2024-06-04



  • Neural Architecture Dilation for Adversarial Robustness                                From aniline to phenol: carbon-nitrogen bond activation via uranyl photoredox catalysis
    About
    |
    Contact
    |
    Copyright © PubCard