Year
Month
(Peer-Reviewed) Label-free trace detection of bio-molecules by liquid-interface assisted surface-enhanced Raman scattering using a microfluidic chip
Shi Bai ¹, Xueli Ren ², Kotaro Obata ¹, Yoshihiro Ito ², Koji Sugioka ¹
¹ Advanced Laser Processing Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
² Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Opto-Electronic Advances, 2022-08-20
Abstract

Surface-enhanced Raman scattering (SERS), owing to its high sensitivity based on localized surface plasmon resonance of nanostructured metals, is recently attracting much attention to be used for biotechnology, such as cell imaging and tumor therapy. On the other hand, the trace detection of bio-molecules with large molecular weight is still challenging because the troublesome treatment of SERS substrate using coupling or cross-linking agents is required.

In this paper, we apply liquid interface assisted SERS (LI-SERS) method, which provides unique features of collection and self-immobilization of analyte molecules on the SERS substrate, to realize the label-free trace detection of bio-molecules with detection limits of pM ~ fM. Specifically, deoxyribonucleic acid (DNA) discrimination and quantitative detection of β-Amyloid (Aβ) in trace-concentration are demonstrated to illustrate the ultrahigh sensitivity and versatility of the LI-SERS method.

The results suggest LI-SERS is promising for the early-stage diagnosis of diseases such as virus infection and Alzheimer's disease.
Label-free trace detection of bio-molecules by liquid-interface assisted surface-enhanced Raman scattering using a microfluidic chip_1
Label-free trace detection of bio-molecules by liquid-interface assisted surface-enhanced Raman scattering using a microfluidic chip_2
Label-free trace detection of bio-molecules by liquid-interface assisted surface-enhanced Raman scattering using a microfluidic chip_3
  • Harmonic heterostructured pure Ti fabricated by laser powder bed fusion for excellent wear resistance via strength-plasticity synergy
  • Desheng Li, Huanrong Xie, Chengde Gao, Huan Jiang, Liyuan Wang, Cijun Shuai
  • Opto-Electronic Advances
  • 2025-09-25
  • Strong-confinement low-index-rib-loaded waveguide structure for etchless thin-film integrated photonics
  • Yifan Qi, Gongcheng Yue, Ting Hao, Yang Li
  • Opto-Electronic Advances
  • 2025-09-25
  • Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacement-current in positive dielectric anisotropy liquid crystals
  • Junho Jung, HaYoung Jung, GyuRi Choi, HanByeol Park, Sun-Mi Park, Ki-Sun Kwon, Heui-Seok Jin, Dong-Jin Lee, Hoon Jeong, JeongKi Park, Byeong Koo Kim, Seung Hee Lee, MinSu Kim
  • Opto-Electronic Advances
  • 2025-09-25
  • Dual-frequency angular-multiplexed fringe projection profilometry with deep learning: breaking hardware limits for ultra-high-speed 3D imaging
  • Wenwu Chen, Yifan Liu, Shijie Feng, Wei Yin, Jiaming Qian, Yixuan Li, Hang Zhang, Maciej Trusiak, Malgorzata Kujawinska, Qian Chen, Chao Zuo
  • Opto-Electronic Advances
  • 2025-09-25
  • Phase matching sampling algorithm for sampling rate reduction in time division multiplexing optical fiber sensor system
  • Junhui Wu, Zhilin Xu, Yi Shi, Yurong Liang, Qizhen Sun
  • Opto-Electronic Technology
  • 2025-09-18
  • Three-dimensional integrated optical fiber devices: emergence and applications
  • Tingting Yuan, Xiaotong Zhang, Shitai Yang, Donghui Wang, Libo Yuan
  • Opto-Electronic Technology
  • 2025-09-18
  • Femtosecond laser micro/nano-processing via multiple pulses incubation
  • Jingbo Yin, Zhenyuan Lin, Lingfei Ji, Minghui Hong
  • Opto-Electronic Technology
  • 2025-09-18
  • All-optical digital logic and neuromorphic computing based on multi-wavelength auxiliary and competition in a single microring resonator
  • Qiang Zhang, Yingjun Fang, Ning Jiang, Anran Li, Jiahao Qian, Yiqun Zhang, Gang Hu, Kun Qiu
  • Opto-Electronic Science
  • 2025-08-28
  • Fast step heterodyne light-induced thermoelastic spectroscopy gas sensing based on a quartz tuning fork with high-frequency of 100 kHz
  • Yuanzhi Wang Ying He, Shunda Qiao, Xiaonan Liu, Chu Zhan, Xiaoming Duan, Yufei Ma
  • Opto-Electronic Advances
  • 2025-08-28
  • Advances and new perspectives of optical systems and technologies for aerospace applications: a comprehensive review
  • Sandro Oliveira, Jan Nedoma, Radek Martinek, Carlos Marques
  • Opto-Electronic Advances
  • 2025-08-25
  • Dynamic spatial beam shaping for ultrafast laser processing: a review
  • Cyril Mauclair, Bahia Najih, Vincent Comte, Florent Bourquard, Martin Delaigue
  • Opto-Electronic Science
  • 2025-08-25
  • Aberration-corrected differential phase contrast microscopy with annular illuminations
  • Yao Fan, Chenyue Zheng, Yefeng Shu, Qingyang Fu, Lixiang Xiong, Guifeng Lu, Jiasong Sun, Chao Zuo, Qian Chen
  • Opto-Electronic Science
  • 2025-08-25



  • Metasurface-based nanoprinting: principle, design and advances                                Natural history and cycle threshold values analysis of COVID-19 in Xiamen City, China
    About
    |
    Contact
    |
    Copyright © PubCard