(Peer-Reviewed) Laser scribed graphene for supercapacitors
Zhengfen Wan 万正芬 ¹ ², Xi Chen 陈希 ¹ ², Min Gu 顾敏 ¹ ²
¹ Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
中国 上海 上海理工大学光子芯片研究院
² Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
中国 上海 上海理工大学光电信息与计算机工程学院 人工智能纳米光子学中心
Opto-Electronic Advances, 2021-07-25
Abstract
Supercapacitors, with the merits of both capacitors for safe and fast charge and batteries for high energy storage have drawn tremendous attention. Recently, laser scribed graphene has been increasingly studied for supercapacitor applications due to its unique properties, such as flexible fabrication, large surface area and high electrical conductivity. With the laser direct writing process, graphene can be directly fabricated and patterned as the supercapacitor electrodes.
In this review, facile laser direct writing methods for graphene were firstly summarized. Various precursors, mainly graphene oxide and polyimide were employed for laser scribed graphene and the modifications of graphene properties were also discussed. This laser scribed graphene was applied for electrochemical double-layer capacitors, pseudo-capacitors and hybrid supercapacitors. Diverse strategies including doping, composite materials and pattern design were utilized to enhance the electrochemical performances of supercapacitors. Featured supercapacitors with excellent flexible, ultrafine-structured and integrated functions were also reviewed.
Meta-lens digital image correlation
Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
Opto-Electronic Advances
2025-07-29
Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
Opto-Electronic Science
2025-07-25
Review for wireless communication technology based on digital encoding metasurfaces
Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
Opto-Electronic Advances
2025-07-17