Year
Month
(Peer-Reviewed) Resonantly enhanced second- and third-harmonic generation in dielectric nonlinear metasurfaces
Ji Tong Wang 王济彤 ¹, Pavel Tonkaev ², Kirill Koshelev ², Fangxing Lai 赖方兴 ³, Sergey Kruk ², Qinghai Song 宋清海 ³, Yuri Kivshar ², Nicolae C. Panoiu ¹ ⁴
¹ Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom
² Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra ACT 2601, Australia
³ Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
中国 深圳 哈尔滨工业大学(深圳) 广东省半导体光电材料与智能光子系统重点实验室 微纳光电信息系统理论与技术工信部重点实验室
⁴ Wuzhen Laboratory, EGO Wuzhen Digital Economy Industrial Park, No. 925 Daole Road, Tongxiang City, China
中国 桐乡 EGO乌镇数字经济产业园 乌镇实验室
Opto-Electronic Advances, 2024-05-15
Abstract

Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale, thus facilitating both advances in fundamental research and the development of new practical applications in photonics, lasing, and sensing. Here, we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second- and third-order nonlinear optical response.

Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances, we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation (SHG) and the bulk contribution to third-harmonic generation (THG) from the meta-atoms. Next, we experimentally achieve optical resonances with high quality factors, which greatly boosts light-matter interaction, resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.

A good agreement between theoretical predictions and experimental measurements is observed. To gain deeper insights into the physics of the investigated nonlinear optical processes, we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.

Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces, enabling the development of efficient active photonic nanodevices.
Resonantly enhanced second- and third-harmonic generation in dielectric nonlinear metasurfaces_1
Resonantly enhanced second- and third-harmonic generation in dielectric nonlinear metasurfaces_2
Resonantly enhanced second- and third-harmonic generation in dielectric nonlinear metasurfaces_3
Resonantly enhanced second- and third-harmonic generation in dielectric nonlinear metasurfaces_4
  • OptoGPT: A foundation model for inverse design in optical multilayer thin film structures
  • Taigao Ma, Haozhu Wang, L. Jay Guo
  • Opto-Electronic Advances
  • 2024-07-10
  • Paving continuous heat dissipation pathways for quantum dots in polymer with orange-inspired radially aligned UHMWPE fibers
  • Xuan Yang, Xinfeng Zhang, Tianxu Zhang, Linyi Xiang, Bin Xie, Xiaobing Luo
  • Opto-Electronic Advances
  • 2024-07-05
  • Multiplexed stimulated emission depletion nanoscopy (mSTED) for 5-color live-cell long-term imaging of organelle interactome
  • Yuran Huang, Zhimin Zhang, Wenli Tao, Yunfei Wei, Liang Xu, Wenwen Gong, Jiaqiang Zhou, Liangcai Cao, Yong Liu, Yubing Han, Cuifang Kuang, Xu Liu
  • Opto-Electronic Advances
  • 2024-07-05
  • Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
  • Yuxin Tian, Boyu Dong, Yaxuan Li, Bing Xiong, Junwen Zhang, Changzheng Sun, Zhibiao Hao, Jian Wang, Lai Wang, Yanjun Han, Hongtao Li, Lin Gan, Nan Chi, Yi Luo
  • Opto-Electronic Science
  • 2024-07-01
  • Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
  • Shasha Li, Yini Fang, Jianfang Wang
  • Opto-Electronic Science
  • 2024-06-28
  • Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots
  • Anir S. Sharbirin, Rebekah E. Kong, Wendy B. Mato, Trang Thu Tran, Eunji Lee, Jolene W. P. Khor, Afrizal L. Fadli, Jeongyong Kim
  • Opto-Electronic Advances
  • 2024-06-28
  • High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses
  • Kotaro Obata, Shota Kawabata, Yasutaka Hanada, Godai Miyaji, Koji Sugioka
  • Opto-Electronic Science
  • 2024-06-24
  • Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution
  • Xin Xu, Qin Luo, Jixiang Wang, Yahui Song, Hong Ye, Xin Zhang, Yi He, Minxuan Sun, Ruobing Zhang, Guohua Shi
  • Opto-Electronic Advances
  • 2024-06-11
  • Seeing at a distance with multicore fibers
  • Haogong Feng, Xi Chen, Runze Zhu, Yifeng Xiong, Ye Chen, Yanqing Lu, Fei Xu
  • Opto-Electronic Advances
  • 2024-06-05
  • NIR-triggered on-site NO/ROS/RNS nanoreactor: Cascade-amplified photodynamic/photothermal therapy with local and systemic immune responses activation
  • Ziqing Xu, Yakun Kang, Jie Zhang, Jiajia Tang, Hanyao Sun, Yang Li, Doudou He, Xuan Sha, Yuxia Tang, Ziyi Fu, Feiyun Wu, Shouju Wang
  • Opto-Electronic Advances
  • 2024-06-05
  • Reconfigurable optical neural networks with Plug-and-Play metasurfaces
  • Yongmin Liu, Yuxiao Li
  • Opto-Electronic Advances
  • 2024-06-04



  • Active tuning of anisotropic phonon polaritons in natural van der Waals crystals with negative permittivity substrates and its application in energy transport                                Photo-driven fin field-effect transistors
    About
    |
    Contact
    |
    Copyright © PubCard