Year
Month
(Peer-Reviewed) Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting
Dehai Liang 梁德海 ¹, Saif M. H. Qaid ², Xin Yang 杨鑫 ⁴, Shuangyi Zhao 赵双易 ¹, Binbin Luo 罗彬彬 ³, Wensi Cai 蔡文思 ¹, Qingkai Qian 钱庆凯 ¹, Zhigang Zang 臧志刚 ¹
¹ Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
中国 重庆 重庆大学光电技术及系统教育部重点实验室
² Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
³ Department of Chemistry and Chemical Engineering, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
中国 汕头 汕头大学化学化工学院 广东省有序结构材料的制备与应用重点实验室
⁴ Department of Oil, Army Logistics Academy of PLA, Chongqing 401311, China
中国 重庆 中国人民解放军陆军勤务学院 石油系
Opto-Electronic Advances, 2024-03-20
Abstract

The Sb³⁺ doping strategy has been proven to be an effective way to regulate the band gap and improve the photophysical properties of organic-inorganic hybrid metal halides (OIHMHs). However, the emission of Sb³⁺ ions in OIHMHs is primarily confined to the low energy region, resulting in yellow or red emissions. To date, there are few reports about green emission of Sb³⁺-doped OIHMHs.

Here, we present a novel approach for regulating the luminescence of Sb³⁺+ ions in 0D C₁₀H₂₂N₆InCl₇·H₂O via hydrogen bond network, in which water molecules act as agents for hydrogen bonding. Sb3+-doped C₁₀H₂₂N₆InCl₇·H₂O shows a broadband green emission peaking at 540 nm and a high photoluminescence quantum yield (PLQY) of 80%. It is found that the intense green emission stems from the radiative recombination of the self-trapped excitons (STEs). Upon removal of water molecules with heat, C₁₀H₂₂N₆In₁₋ₓ SbₓCl₇ generates yellow emission, attributed to the breaking of the hydrogen bond network and large structural distortions of excited state.

Once water molecules are adsorbed by C₁₀H₂₂N₆In₁₋ₓ SbₓCl₇, it can subsequently emit green light. This water-induced reversible emission switching is successfully used for optical security and information encryption. Our findings expand the understanding of how the local coordination structure influences the photophysical mechanism in Sb³⁺-doped metal halides and provide a novel method to control the STEs emission.
Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting_1
Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting_2
Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting_3
Luminescence regulation of Sb3+ in 0D hybrid metal halides by hydrogen bond network for optical anti-counterfeiting_4
  • Photo-driven fin field-effect transistors
  • Jintao Fu, Chongqian Leng, Rui Ma, Changbin Nie, Feiying Sun, Genglin Li, Xingzhan Wei
  • Opto-Electronic Science
  • 2024-05-28
  • Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces
  • Tong Nan, Huan Zhao, Jinying Guo, Xinke Wang, Hao Tian, Yan Zhang
  • Opto-Electronic Science
  • 2024-05-28
  • Resonantly enhanced second- and third-harmonic generation in dielectric nonlinear metasurfaces
  • Ji Tong Wang, Pavel Tonkaev, Kirill Koshelev, Fangxing Lai, Sergey Kruk, Qinghai Song, Yuri Kivshar, Nicolae C. Panoiu
  • Opto-Electronic Advances
  • 2024-05-15
  • Liquid crystal-integrated metasurfaces for an active photonic platform
  • Dohyun Kang, Hyeonsu Heo, Younghwan Yang, Junhwa Seong, Hongyoon Kim, Joohoon Kim, Junsuk Rho
  • Opto-Electronic Advances
  • 2024-04-25
  • Fast source mask co-optimization method for high-NA EUV lithography
  • Ziqi Li, Lisong Dong, Xu Ma, Yayi Wei
  • Opto-Electronic Advances
  • 2024-04-25
  • Polariton lasing in Mie-resonant perovskite nanocavity
  • Mikhail A. Masharin, Daria Khmelevskaia, Valeriy I. Kondratiev, Daria I. Markina, Anton D. Utyushev, Dmitriy M. Dolgintsev, Alexey D. Dmitriev, Vanik A. Shahnazaryan, Anatoly P. Pushkarev, Furkan Isik, Ivan V. Iorsh, Ivan A. Shelykh, Hilmi V. Demir, Anton K. Samusev, Sergey V. Makarov
  • Opto-Electronic Advances
  • 2024-04-25
  • High-Q resonant Terahertz metasurfaces
  • Manukumara Manjappa, Yuri Kivshar
  • Opto-Electronic Advances
  • 2024-04-25
  • Efficient stochastic parallel gradient descent training for on-chip optical processor
  • Yuanjian Wan, Xudong Liu, Guangze Wu, Min Yang, Guofeng Yan, Yu Zhang, Jian Wang
  • Opto-Electronic Advances
  • 2024-04-25
  • High-intensity spatial-mode steerable frequency up-converter toward on-chip integration
  • Haizhou Huang, Huaixi Chen, Huagang Liu, Zhi Zhang, Xinkai Feng, Jiaying Chen, Hongchun Wu, Jing Deng, Wanguo Liang, Wenxiong Lin
  • Opto-Electronic Science
  • 2024-04-24
  • Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors
  • Jiao Jiao Liu, Xinxin Yang, Qiulei Xu, Ruiguang Chang, Zhenghui Wu, Huaibin Shen
  • Opto-Electronic Science
  • 2024-04-24
  • Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
  • Ruozhong Han, Yuchan Zhang, Qilin Jiang, Long Chen, Kaiqiang Cao, Shian Zhang, Donghai Feng, Zhenrong Sun, Tianqing Jia
  • Opto-Electronic Science
  • 2024-03-22
  • Optical scanning endoscope via a single multimode optical fiber
  • Guangxing Wu, Runze Zhu, Yanqing Lu, Minghui Hong, Fei Xu
  • Opto-Electronic Science
  • 2024-03-22



  • Multi-wavelength nanowire micro-LEDs for future high speed optical communication                                Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator
    About
    |
    Contact
    |
    Copyright © PubCard