Year
Month
(Preprint) On the Generalized Uncertainty Principle
Ming-Cheng Chen 陈明城 ¹ ², Chao-Yang Lu 陆朝阳 ¹ ², Jian-Wei Pan 潘建伟 ¹ ²
¹ Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; 中国科学技术大学 近代物理系 合肥微尺度物质科学国家研究中心
² CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China; 中国科学技术大学 中国科学院 量子信息与量子科技前沿协同创新中心
ChinaXiv, 2021-08-13
Abstracts

Generalized Uncertainty Principle (GUP), which manifests a minimal Planck length in quantum spacetime, is central in various quantum gravity theories and has been widely used to describe the Planck-scale phenomenon. Here, we propose a thought experiment based on GUP – as a quantum version of Galileo's falling bodies experiment – to show that the experimental results cannot be consistently described in quantum mechanics.

This paradox arises from the interaction of two quantum systems in an interferometer, a photon and a mirror, with different effective Planck constants. Our thought experiment rules out the widely used GUP, and establishes a Quantum Coupling Principle that two physical systems of different effective Planck constants cannot be consistently coupled in quantum mechanics. Our results point new directions to quantum gravity.
On the Generalized Uncertainty Principle_1
On the Generalized Uncertainty Principle_2
On the Generalized Uncertainty Principle_3
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07
  • On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
  • Cheng-Long Zheng, Pei-Nan Ni, Yi-Yang Xie, Patrice Genevet
  • Opto-Electronic Advances
  • 2025-01-07
  • Ferroelectric domain engineering of lithium niobate
  • Jackson J. Chakkoria, Aditya Dubey, Arnan Mitchell, Andreas Boes
  • Opto-Electronic Advances
  • 2025-01-03



  • China's Technology Cooperation with Russia: Geopolitics, Economics, and Regime Security                                China–US Strategic Competition and the Descent of a Porous Curtain
    About
    |
    Contact
    |
    Copyright © PubCard