(Preprint) On the Generalized Uncertainty Principle
Ming-Cheng Chen 陈明城 ¹ ², Chao-Yang Lu 陆朝阳 ¹ ², Jian-Wei Pan 潘建伟 ¹ ²
¹ Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; 中国科学技术大学 近代物理系 合肥微尺度物质科学国家研究中心
² CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China; 中国科学技术大学 中国科学院 量子信息与量子科技前沿协同创新中心
ChinaXiv, 2021-08-13
Abstracts
Generalized Uncertainty Principle (GUP), which manifests a minimal Planck length in quantum spacetime, is central in various quantum gravity theories and has been widely used to describe the Planck-scale phenomenon. Here, we propose a thought experiment based on GUP – as a quantum version of Galileo's falling bodies experiment – to show that the experimental results cannot be consistently described in quantum mechanics.
This paradox arises from the interaction of two quantum systems in an interferometer, a photon and a mirror, with different effective Planck constants. Our thought experiment rules out the widely used GUP, and establishes a Quantum Coupling Principle that two physical systems of different effective Planck constants cannot be consistently coupled in quantum mechanics. Our results point new directions to quantum gravity.
Meta-lens digital image correlation
Zhou Zhao, Xiaoyuan Liu, Yu Ji, Yukun Zhang, Yong Chen, Zhendong Luo, Yuzhou Song, Zihan Geng, Takuo Tanaka, Fei Qi, Shengxian Shi, Mu Ku Chen
Opto-Electronic Advances
2025-07-29
Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
Jiapu Li, Xinghua Liu, Zhuohua Xiao, Shengjiang Yang, Zhanfei Li, Xin Gui, Meng Shen, He Jiang, Xuelei Fu, Yiming Wang, Song Gong, Tuan Guo, Zhengying Li
Opto-Electronic Science
2025-07-25
Review for wireless communication technology based on digital encoding metasurfaces
Haojie Zhan, Manna Gu, Ying Tian, Huizhen Feng, Mingmin Zhu, Haomiao Zhou, Yongxing Jin, Ying Tang, Chenxia Li, Bo Fang, Zhi Hong, Xufeng Jing, Le Wang
Opto-Electronic Advances
2025-07-17