Year
Month
(Peer-Reviewed) Exploring the pharmacological mechanism of danhe granules against hyperlipidemia by means of network pharmacology and verified by preliminary experiments
Zhi-Qing Zhang 张志清 ¹, Ai-Ping Chen ¹, Tong Yu 于彤 ¹, Shuang-Jie Yang 杨双杰 ¹, De-Shuai Yu 俞德帅 ², Ran Yang 杨然 ³, Xin-Lou Chai 柴欣楼 ¹
¹ School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
中国 北京 北京中医药大学中医学院
² Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
中国 北京 北京中医药大学东直门医院
³ Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
中国 北京 中国中医科学院广安门医院 心血管内科
Objective

This study explored the multicomponent, multitarget, and multipathway mechanism of Danhe granules (DG) against hyperlipidemia through network pharmacology. The relevant targets and pathways were verified by preliminary experiments.

Methods

The active components of DG were selected by TCMSP and TCMIP database, and the component-target network diagram was constructed by Cytoscape 3.7.1. The protein–protein interaction network of targets was constructed and core targets were screened out by STRING11.0 database. Metascape database and Cytoscape 3.7.1 were used to enrich the target and establish a hyperlipidemia model in Sprague-Dawley (SD) rats to detect blood lipid and oxidative stress indexes and observed pathological changes of aorta by H and E staining.

Results

The results showed that a total of seven active components of DG were screened out, including quercetin, sitosterol, luteolin, kaempferol, etc. There were 127 corresponding targets, including AKT1, tumor necrosis factor, TP53, interleukin-6, RELA, vascular endothelial growth factor, superoxide dismutases, and catalase. It is mainly involved in biological processes such as drug response, regulation of apoptosis, redox reaction, and lipid reaction. There were 573 signal pathways corresponding to the target, including HIF-1 signal pathway, TNF signal pathway, VEGF signal pathway, nonalcoholic fatty liver disease, etc. The experiment verified that DG can reduce the blood lipid of SD rats by regulating the process of oxidative stress.

Conclusions

This study made a preliminary study on the pharmacological mechanism of DG against hyperlipidemia and laid the foundation for the research and development of new drugs and subsequent in-depth research.
Exploring the pharmacological mechanism of danhe granules against hyperlipidemia by means of network pharmacology and verified by preliminary experiments_1
Exploring the pharmacological mechanism of danhe granules against hyperlipidemia by means of network pharmacology and verified by preliminary experiments_2
Exploring the pharmacological mechanism of danhe granules against hyperlipidemia by means of network pharmacology and verified by preliminary experiments_3
Exploring the pharmacological mechanism of danhe granules against hyperlipidemia by means of network pharmacology and verified by preliminary experiments_4
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07



  • Experimental investigation of migration and solidification of molten salt leaking through tank cracks                                Essential role of MALAT1 in reducing traumatic brain injury
    About
    |
    Contact
    |
    Copyright © PubCard