Year
Month
(Peer-Reviewed) Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band
Huan Zhao 赵欢 ¹ ², Xinke Wang 王新柯 ², Shutian Liu 刘树田 ¹, Yan Zhang 张岩 ²
¹ Department of Physics, Harbin Institute of Technology, Harbin 150001, China
中国 哈尔滨 哈尔滨工业大学物理系
² Beijing Key Laboratory of Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Advanced Innovation Center for Imaging Theory and Technology, Department of Physics, Capital Normal University, Beijing 100048, China
中国 北京 首都师范大学物理系 北京成像理论与技术高精尖创新中心 超材料与器件北京市重点实验室 太赫兹光电子学省部共建教育部重点实验室
Opto-Electronic Advances, 2023-02-25
Abstract

Polarization is a basic characteristic of electromagnetic waves that conveys much optical information owing to its many states. The polarization state is manipulated and controlled for optical information security, optical encryption, and optical communication. Metasurface devices provide a new way to manipulate wave-fronts of light.

A single ultrathin metasurface device can generate and modulate several differently polarized light fields, and thus carries optical information in several different channels. Terahertz (THz) waves have become widely used as carrier waves for wireless communication. Compact and functional metasurface devices are in high demand for THz elements and systems.

This paper proposes a tri-layer metallic THz metasurface for multi-channel polarization generation and phase modulation with a high efficiency of approximately 80%. An azimuthally polarized THz vectorial beam generator is realized and characterized for use as a THz polarization analyzer. The incident polarization angle can be observed graphically with high accuracy.

Moreover, a vectorial hologram with eight channels for different linear polarization states is demonstrated experimentally. The information in different holograms can be hidden by choosing the polarization channel for detection. This work contributes to achieving multi-functional metasurface in the THz band and can benefit THz communication and optical information security.
Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band_1
Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band_2
Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band_3
Highly efficient vectorial field manipulation using a transmitted tri-layer metasurface in the terahertz band_4
  • Light-induced enhancement of exciton transport in organic molecular crystal
  • Xiao-Ze Li, Shuting Dai, Hong-Hua Fang, Yiwen Ren, Yong Yuan, Jiawen Liu, Chenchen Zhang, Pu Wang, Fangxu Yang, Wenjing Tian, Bin Xu, Hong-Bo Sun
  • Opto-Electronic Advances
  • 2025-03-28
  • Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
  • Xiaowen Li, Jie Sheng, Zhengji Wen, Fangyuan Li, Xiran Huang, Mingqing Zhang, Yi Zhang, Duo Cao2, Xi Shi, Feng Liu, Jiaming Hao
  • Opto-Electronic Advances
  • 2025-03-28
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • High-efficiency RGB achromatic liquid crystal diffractive optical elements
  • Yuqiang Ding, Xiaojin Huang, Yongziyan Ma, Yan Li, Shin-Tson Wu
  • Opto-Electronic Advances
  • 2025-01-07



  • Table-top optical parametric chirped pulse amplifiers: past and present                                High performance "non-local" generic face reconstruction model using the lightweight Speckle-Transformer (SpT) UNet
    About
    |
    Contact
    |
    Copyright © PubCard