Year
Month
(Peer-Reviewed) High-efficiency RGB achromatic liquid crystal diffractive optical elements
Yuqiang Ding 丁玉强 ¹, Xiaojin Huang 黄小津 ², Yongziyan Ma 马雍子岩 ¹, Yan Li 李燕 ², Shin-Tson Wu 吴诗聪 ¹
¹ College of Optics and Photonics, University of Central Florida, Orlando, FL 32816, USA
² Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
中国 上海 上海交通大学电子工程系
Opto-Electronic Advances, 2025-01-07
Abstract

Liquid crystal Pacharatnam-Berry phase optical elements (PBOEs) have found promising applications in augmented reality and virtual reality because of their slim formfactor, lightweight, and high optical efficiency. However, chromatic aberration remains a serious longstanding problem for diffractive optics, hindering their broader adoption.

To overcome the chromatic aberrations for red, green and blue (RGB) light sources, in this paper, we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk, which plays a vital role to eliminate the chromatic aberration. The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses (PBLs) aligns well with our simulation results.

Furthermore, in a feasibility demonstration experiment using a laser projector, our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL. Additionally, polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios.

This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes. Overall, our approach enables high optical efficiency, low fabrication complexity, and high degree of design freedom to accommodate any liquid crystal material and RGB light sources, holding immense potential for widespread applications of achromatic PBOEs.
High-efficiency RGB achromatic liquid crystal diffractive optical elements_1
High-efficiency RGB achromatic liquid crystal diffractive optical elements_2
High-efficiency RGB achromatic liquid crystal diffractive optical elements_3
High-efficiency RGB achromatic liquid crystal diffractive optical elements_4
  • Soliton microcombs in optical microresonators with perfect spectral envelopes
  • Mulong Liu, Ziqi Wei, Haotong Zhu, Hongwei Wang, Xiao Yu, Xilin Han, Wei Zhao, Guangwei Hu, Peng Xie
  • Opto-Electronic Advances
  • 2025-03-12
  • Terahertz active multi-channel vortices with parity symmetry breaking and near/far field multiplexing based on a dielectric-liquid crystal-plasmonic metadevice
  • Yiming Wang, Fei Fan, Huijun Zhao, Yunyun Ji, Jing Liu, Shengjiang Chang
  • Opto-Electronic Advances
  • 2025-03-06
  • Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
  • Hui Li, Chenhui Zhao, Jie Li, Hang Xu, Wenhui Xu, Qi Tan, Chunyu Song, Yun Shen, Jianquan Yao
  • Opto-Electronic Science
  • 2025-02-19
  • Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
  • Runqiu Wang, Shunda Qiao, Ying He, Yufei Ma
  • Opto-Electronic Advances
  • 2025-01-22
  • A novel approach towards robust construction of physical colors on lithium niobate crystal
  • Quanxin Yang, Menghan Yu, Zhixiang Chen, Siwen Ai, Ulrich Kentsch, Shengqiang Zhou, Yuechen Jia, Feng Chen, Hongliang Liu
  • Opto-Electronic Advances
  • 2025-01-22
  • Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
  • Hongyu Zhou, Chao Zhang, Hengchang Nong, Junjie Weng, Dongying Wang, Yang Yu, Jianfa Zhang, Chaofan Zhang, Jinran Yu, Zhaojian Zhang, Huan Chen, Zhenrong Zhang, Junbo Yang
  • Opto-Electronic Advances
  • 2025-01-22
  • Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
  • Ning Sun, Yuan Gan, Yujie Wu, Xing Wang, Shen Shen, Yong Zhu, Jie Zhang
  • Opto-Electronic Advances
  • 2025-01-22
  • High-frequency enhanced ultrafast compressed active photography
  • Yizhao Meng, Yu Lu, Pengfei Zhang, Yi Liu, Fei Yin, Lin Kai, Qing Yang, Feng Chen
  • Opto-Electronic Advances
  • 2025-01-15
  • Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
  • Zhuo Wang, Weikang Pan, Yu He, Zhiyan Zhu, Xiangyu Jin, Muhan Liu, Shaojie Ma, Qiong He, Shulin Sun, Lei Zhou
  • Opto-Electronic Science
  • 2025-01-15
  • On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
  • Cheng-Long Zheng, Pei-Nan Ni, Yi-Yang Xie, Patrice Genevet
  • Opto-Electronic Advances
  • 2025-01-07
  • Ferroelectric domain engineering of lithium niobate
  • Jackson J. Chakkoria, Aditya Dubey, Arnan Mitchell, Andreas Boes
  • Opto-Electronic Advances
  • 2025-01-03
  • Smart reconfigurable metadevices made of shape memory alloy metamaterials
  • Shiqiang Zhao, Yuancheng Fan, Ruisheng Yang, Zhehao Ye, Fuli Zhang, Chen Wang, Weijia Luo, Yongzheng Wen, Ji Zhou
  • Opto-Electronic Advances
  • 2025-01-03



  • A novel approach towards robust construction of physical colors on lithium niobate crystal                                Design, setup, and facilitation of the speckle structured illumination endoscopic system
    About
    |
    Contact
    |
    Copyright © PubCard