(Peer-Reviewed) Laser-induced stretchable bioelectronic interfaces by frozen exfoliation
Xiaowei Li 李晓炜
Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
中国 北京 北京理工大学 机械与车辆学院 激光微纳制造研究所
Opto-Electronic Advances, 2023-06-04
Abstract
Highly stretchable laser-induced graphene—hydrogel film interfaces in flexible electronic materials are fabricated by frozen exfoliation, and exhibit high stretchability, durability, and design flexibility. This technology offers an advanced technological pathway for manufacturing highly flexible substrates. They can be utilized in numerous complex surface applications, providing an advanced technological pathway for manufacturing highly flexible substrates in the future.
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
Jie Hu, Weihao Lin, Liyang Shao, Chenlong Xue, Fang Zhao, Dongrui Xiao, Yang Ran, Yue Meng, Panpan He, Zhiguang Yu, Jinna Chen, Perry Ping Shum
Opto-Electronic Advances
2024-12-16
Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
Zhi Jiang, Cizhe Fang, Xu Ran, Yu Gao, Ruiqing Wang, Jianguo Wang, Danyang Yao, Xuetao Gan, Yan Liu, Yue Hao, Genquan Han
Opto-Electronic Advances
2024-10-31