(Peer-Reviewed) Ultrafast multi-target control of tightly focused light fields
	
		Yanxiang Zhang ¹, Xiaofei Liu ², Han Lin 林瀚 ³, Dan Wang ¹, Ensi Cao 曹恩思 ¹, Shaoding Liu 刘绍鼎 ¹, Zhongquan Nie 聂仲泉 ¹, Baohua Jia 贾宝华 ³
			
				¹ Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
山西 太原 太原理工大学物理与光电工程学院 新型传感器与智能控制教育部与山西省重点实验室
² Department of Physics, Harbin Institute of Technology, Harbin 150001, China
中国 哈尔滨 哈尔滨工业大学物理学院
³ Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
			
			
				Opto-Electronic Advances, 2022-01-28
			
		
		
			
		
		
	 
	
	
	Abstract
The control of ultrafast optical field is of great interest in developing ultrafast optics as well as the investigation on various light-matter interactions with ultrashort pulses. However, conventional spatial encoding approaches have only limited steerable targets usually neglecting the temporal effect, thus hindering their broad applications. Here we present a new concept for realizing ultrafast modulation of multi-target focal fields based on the facile combination of time-dependent vectorial diffraction theory with fast Fourier transform. 
This is achieved by focusing femtosecond pulsed light carrying vectorial-vortex by a single objective lens under tight focusing condition. It is uncovered that the ultrafast temporal degree of freedom within a configurable temporal duration (~400 fs) plays a pivotal role in determining the rich and exotic features of the focused optical field at one time, namely, bright-dark alternation, periodic rotation, and longitudinal/transverse polarization conversion. The underlying control mechanisms have been unveiled. 
Besides being of academic interest in diverse ultrafast spectral regimes, these peculiar behaviors of the space-time evolutionary beams may underpin prolific ultrafast-related applications such as multifunctional integrated optical chip, high-efficiency laser trapping, microstructure rotation, super-resolution optical microscopy, precise optical measurement, and liveness tracking.
	
	
	
	
	
	
		    
		    
    			
		    
    			
		        Meta-lens digital image correlation
		        
		        Zhou Zhao,  Xiaoyuan Liu,  Yu Ji,  Yukun Zhang,  Yong Chen,  Zhendong Luo,  Yuzhou Song,  Zihan Geng,  Takuo Tanaka,  Fei Qi,  Shengxian Shi,  Mu Ku Chen
		        Opto-Electronic Advances
		        
		        		        		2025-07-29
		        	
		     
		    
    			
		        Broadband ultrasound generator over fiber-optic tip for in vivo emotional stress modulation
		        
		        Jiapu Li,  Xinghua Liu,  Zhuohua Xiao,  Shengjiang Yang,  Zhanfei Li,  Xin Gui,  Meng Shen,  He Jiang,  Xuelei Fu,  Yiming Wang,  Song Gong,  Tuan Guo,  Zhengying Li
		        Opto-Electronic Science
		        
		        		        		2025-07-25
		        	
		     
		    
    			
		    
    			
		        Review for wireless communication technology based on digital encoding metasurfaces
		        
		        Haojie Zhan,  Manna Gu,  Ying Tian,  Huizhen Feng,  Mingmin Zhu,  Haomiao Zhou,  Yongxing Jin,  Ying Tang,  Chenxia Li,  Bo Fang,  Zhi Hong,  Xufeng Jing,  Le Wang
		        Opto-Electronic Advances
		        
		        		        		2025-07-17